
A method of developing soft-

ware that increases the relia-

bility of code and the speed at

which it is written is gaining ground in

automotive system development.

Domain specific modelling (DSM)

uses a graphical programming language

to represent the various facets of a sys-

tem. It can include automatic code gen-

eration, which means faster creation of

source code than manual coding and a

significant reduction in defects in the

code. Because the languages used sup-

port higher level abstractions, rather than

general purpose modelling languages, it

requires less effort and fewer low level

details to specify a given system.

Whilst code generation has been

used in the past – notably in the CASE

tools of the 1980s and UML tools of the

1990s – the code generators and mod-

elling languages were built by tool ven-

dors. With DSM, this process is more

likely to occur within an organisation. A

few expert developers create the model-

ling language and generators, which are

then used by other developers.

Because these tools are built by the

organisation that will use them, they

can be tailored to the exact domain and

needs. This approach also reduces the

time needed for developers to learn the

language, since it can use familiar terms

and concepts. And, since only one

organisation’s requirements need to be

considered, it is easier for the modelling

language to be adapted to change.

An example of model based code gen-

eration from domain specific languages for

the automotive sector was presented by Dr

Juha-Pekka Tolvanen of MetaCase and

Cord Giese of Delta Software at the recent

Software im Automobil conference. They

described the use of DSM to develop a

control unit for windscreen wipers.

Dr Tolvanen and Giese believe a key

element of DSM’s success is the focus

of the models on the application

domain, rather than abstractions of

software construction mechanisms.

Since the rules of the domain can be

incorporated into the language as con-

straints, the possibility of specifying

illegal or unwanted design models can

be eliminated. The presenters say com-

panies that apply this approach on top

of a platform or framework can gener-

ate complete final products automati-

cally from high level specification

models.

This is possible because the model-

ling language and the code generator

are designed to fit only one problem

domain and its implementation space.

Experienced developers in a company

specify the languages and code genera-

tors, so the resulting code is better than

most application developers write by

hand.

As an example, they described a

windscreen wiper development process.

The microcontroller is an AVR128 8bit

risc processor with 128kbyte of flash

and 4kbyte of sram. The software run-

ning on this controller consists of the

PURE operating system (an object ori-

ented system configurable for AVR

microcontrollers), a generic hardware

abstraction layer and several C++

classes to be generated (the concepts

also apply to C).

As well as the microcontroller, the

system comprises a combination

switch, an ignition key, one motor for

each wiper, an optional rotary switch

and several optional sensors (rain, door

open, hood open, outside temperature,

speed). It supports one or two front

wiper arms and an optional rear wiper

arm. The front wipers have three possi-

23New E lec t ron ics www.newelec t ron ics . co .uk 11 Sep tember 2007

Models of elegance
Domain specific modelling promises
fast software with fewer errors.
By Duncan Leslie.

S P E C I A L R E P O R TA U T O M O T I V E E L E C T R O N I C S

40 200
20 220

240

60 180
80 160

100 140120

km/h

Rear wiperRight wiper

Rain sensor Hood

ProcessorFLASH RAM 128k

Memory RAM 4k
AVR 128

Left wiper

Electrical
WiperWire

Electrical

Door
open

Temperature
Speed information

Electrical Electrical

WiperWire

CAN
CANbus

Door module

WiperSystem

Instrument cluster

Code.qxd 5/9/07 5:37 pm Page 23

ble installation positions (left, centre

and right).

In order to generate complete code

properly, Dr Tolvanen and Giese had to

identify the domain concepts and rules

relevant for windscreen wiper control.

These are dictated by the basic system

architecture and what it is required to

do. For example, the service ‘ignition

off ’ could lead to the response ‘finish

wiping’, which means the wiper arm

returns to its start position. A list of

such events includes the preconditions,

requirements, in/out states and con-

straints associated with each event, and

these are used to define modelling lan-

guage objects and rules.

These rules constrain the use of the

language and enforce correct models.

For instance, in a wiper control system,

speed variation is only via a bus to the

main system, which can be chosen from

the list of possible bus types (LIN,

MOST, CAN). Another rule might

specify that a speed sensor can only

have one bus connection.

The language is formalised by defin-

ing its metamodel. The metamodel

allows the user to define the concepts of

the language, properties, legal connec-

tions between elements of the language,

model hierarchy and correctness rules.

Support for reuse and various model

integration approaches is also essential.

Dr Tolvanen and Giese used MetaCase’s

MetaEdit+ tool.

After defining the language, Dr

Tolvanen and Giese provided a visual

representation for it in the form of a

diagram, although other forms are pos-

sible (matrix, table or plain text).

“A good modelling language uses a

notation that closely reflects the actual

problem domain so the models become

easier to read,” says Dr Tolvanen.

“Using UML style rectangles for all the

different model concepts is analogous

to trying to understand a foreign lan-

guage where the only letter is A, with

20 slight variations of inflection.”

Dr Tolvanen and Giese took the nota-

tion from the real product appearance or

easily understood symbols for the sensors.

With the expert created modelling

language in place, other developers

design specific features by adding ele-

ments to the model. The modelling lan-

guage guides correct designs and checks

the required information is given. For

example, whilst adding the connection

to specific wipers, their position infor-

mation is needed and verified. If a sin-

gle wiper configuration is being

designed, the model would know auto-

matically the wiper is expected to be in

the central position.

Code on the road
The models created form the input to

the code generator. At its simplest, the

process means each modelling symbol

produces certain fixed code, although

the generator can also produce different

code depending on the values in the

symbol, its relationship with other sym-

bols or other information in the model.

“In our windscreen wiper example,

we began the implementation work by

programming a specific prototype,”

says Dr Tolvanen. “From a certain level

of complexity, such a prototype is

needed to implement a generator

because it yields the necessary frag-

ments of source code, enriched by task

related knowledge.

“Based on this prototype, we divided

the source code modules into generic

and non generic modules. Whilst the

latter were to be generated, the generic

modules formed the hardware abstrac-

tion layer. In fact, this layer raised the

level of abstraction of the other source

code modules.”

To implement the generator for the

remaining modules, Dr Tolvanen and

Giese used Delta’s HyperSenses genera-

tor development tool to define code

generators. HyperSenses was coupled

with MetaEdit+ by importing the

appropriate metamodel and data.

The target code for the specified model

is produced by applying the code genera-

tor. Since the model provides the configu-

ration for the code generator, no additional

work is required – a single button press

generates the working target code.

“DSM only makes sense in combina-

tion with domain-specific code genera-

tion,” Dr Tolvanen concludes. “In

addition to the productivity gains through

automation, the code is also expected to be

of better quality than handwritten code:

fewer bugs and easier to detect.”

New E lec t ron ics www.newelec t ron ics . co .uk 11 Sep tember 200724

“Code is expected to be of better
quality than handwritten code: fewer
bugs and easier to detect.”
Dr Juha-Pekka Tolvanen, MetaCase

S P E C I A L R E P O R TA U T O M O T I V E E L E C T R O N I C S

Target
code

Generator

Modelling
language

Language
definition

Generator
definition

Application
developer

Experienced
developer

Code.qxd 5/9/07 5:38 pm Page 24

	nele-sep-11-07-p023
	nele-sep-11-07-p024

