
EmbeddedSystems Europe AUGUST/SEPTEMBER 2004 www.embedded.com/europe

CODE GENERATION36

www.embedded.com/europe

The promise of modelling has been to
shift the focus from implementation
to design. Models serve as mecha-

nisms to get a better understanding but
they can also be input for code generators.
This automates development leading to im-
proved productivity, quality and complexity
hiding. Unfortunately, many current mod-
elling languages are based on the code
world and offer only modest possibilities to
raise design abstraction and to achieve full
code generation.

For example, UML uses directly pro-
gramming concepts (classes, return values,
etc.) as modelling constructs. Having a rec-
tangle symbol to illustrate a class in a dia-
gram and then equivalent textual presen-
tation in a programming language does
not provide real generation possibilities –
the level of abstraction in models and code
is the same! As a consequence of this, de-
velopers easily find themselves making
models that describe behaviour and func-
tionality that they find easier to write di-
rectly as code.

Limited code generation possibilities
force developers to start manual program-
ming after design. This kills the idea of full
code generation and minimizes the pro-
ductivity benefits. It has also led to round-
trip problems: if the developer is code-fo-
cused, his models merely visualize static
structures. If the developer is modelling-
oriented, a lot of effort goes into rewriting
generated code and keeping all the other
models than class diagrams up-to-date.
Having the same information in two places,
code and models, is a recipe for trouble.

Generation challenges can be solved in a
similar manner as in the past with pro-
gramming languages: by continuing to
raise abstraction. Models should not be

conceived to visualize code, but describe
higher-level abstractions above program-
ming languages. Similarly, it was better to
move to C to raise the abstraction than start
visualising Assembler code!

The higher level of abstraction varies be-
tween applications and products, though.
Every domain contains its own specific con-
cepts and correctness constraints. There-
fore, modelling languages need to be spe-
cific for each domain. Domain-Specific
Modelling (DSM) languages narrow down
the design space, often to a single range of
products for a single company. Accord-
ingly, models are made up of elements rep-
resenting things that are part of the do-
main world, not the code world. Let’s take
some examples. If we are developing mo-
bile applications for a device, why not have
the concepts of the UI and mobile services
directly in the design language? It is far
more natural to think about application
logic with ‘List’, ‘SMS send’, ‘View’ etc.
than with C code.

Likewise, while developing voice com-
munication systems, microcontroller con-
cepts like ‘Menu’, ‘Prompt’, and ‘Voice
entry’ are closer to the application domain
than Assembler mnemonics. Higher-level
specification languages use these domain-
specific concepts directly as modelling con-
structs.

Because the language follows domain ab-
stractions and semantics, modelers per-
ceive themselves as working directly with
domain concepts. These domain concepts
are typically already known and in use, are
more natural and reflect already the un-
derlying computational models needed to
design the products. Final code (assembler,
3GL, object-oriented etc.) can be still gen-
erated from these high-level specifications.

Cornerstone for the automated code gen-
eration from models is that both the lan-
guage and generators need fit only com-
pany’s requirements.

Recently, open and customizable tech-
nologies have emerged that allow develop-
ers to change both the design languages
and/or code generators to meet different
requirements of software development.
Hence, experienced developers in a com-
pany can adapt the design languages and
generators to a specific domain, and then
actual products can be designed with do-
main-specific languages and generated di-
rectly from models.

Language creation example
Suppose you manufacture digital wrist-
watches and your developers make the
watch applications, such as stopwatch or
world time. Before any new features can be
implemented developers must design them
in the watch domain. This involves apply-
ing the terms and rules of the watch, such
as buttons, alarms, display icons, states and
user’s actions. The domain-specific method
applies these very same concepts directly in
the modelling language. An example of
such a modelling language is illustrated in
figure 1.

The model represents the time setting
feature: the actions a user can make by
pressing buttons, the display elements
blinking, and the actions changing the
time. Accordingly, the definition of the lan-
guage starts by identifying the terminology
and concepts for the modelling language
(like button, icon, etc). These are docu-
mented formally into a metamodel that
can be executed in metamodel-based mod-
elling tools.

In addition to the terminology, the DSM

Full code generation is possible when both the modelling language and generator are fitted to the
requirements of one company and domain only. Dr. Juha-Pekka Tolvanen explains how model-based
code generation can be achieved.

Making model-based
code generation work

AUGUST/SEPTEMBER 2004 EmbeddedSystems Europewww.embedded.com/europe

CODE GENERATION 37

language follows a computational model
that in this case is the state machine – a typ-
ical computational model used with em-
bedded software. However, the level the
state machine operates on and the rules it
applies are not the implementation, but
product rules. The model operates on a
higher level and thus there is far less need
to do modelling than in code visualization
focused languages, but still just enough for
code generators to produce the required
code out of the models.

In the final step of language creation we
enrich and narrow the semantics of the
state machine to focus on the concept of
the watch domain. To use our example
there are two watch-specific extensions in
our state machine. First, the transitions can
be triggered only by the user interaction
when a certain button is pressed. Second,
the actions taking place during the transi-
tion may only operate on time unit entities.
Also the set of possible operations is lim-
ited: one can only add or subtract time
units or roll them up or down. It must be
emphasized that if further needs arise in
the future, we can simply extend the set of
possible operations or define new entity
types to operate with. With the above basic
operations we can cover in our example
all current needs of our watch family and
automate development with code genera-
tors.

True model-based code generators
The generator specifies how information is
extracted from the models and trans-
formed into code. This process depends
on and is guided by the modelling lan-
guage with its concepts, semantics and
rules and the input syntax required by the
target platform.

To be usable, the generation process
must be complete: full code is generated
from the application developer’s point of
view and manual rewriting of the code is
not needed. This completeness has been

the cornerstone of other successful shifts
made with programming languages. Ever
seen anybody manually edit Assembler and
try to keep their C code in synch with it?
Similarly, the generated code should be
simply an intermediate by-product on the
way to the finished product, like .o files in
C compilation.

Such full code generation is difficult, if
not impossible, to achieve when the gener-
ator (and the modelling language giving
the input) is designed to fit to almost all sit-
uations. Full code generation, however, is
possible if both the language and genera-
tors need fit only one company’s require-
ments. This means that the code generator
must work well with the modelling lan-
guage from which it gets input and with the
target platform on which the generated
code will run.

Metamodels guide the generators
While models provide the data as input for
the code generation process, the actual
navigation and retrieval of the design in-
formation is carried out according to the
metamodel. Therefore, the metamodel
should conform to a computational model
that is natural for the developed product.
In most cases certain modifications or ex-
tensions for the basic model are needed for
domain-specific or code generator pur-
poses. This is done to ensure that the mod-
els capture all essential static and behav-
ioural aspects of the product as input for
the code generator. For example, in our
Watch example, we chose the state ma-
chine as our computational model and
then enriched it with such concepts as time
units to meet the requirements for the do-
main and code generation.

Role of the platform framework
A platform provides a well-defined set of
services for the code generator to interface
to: for example, generated code can di-
rectly call the platform components and

their services. Often, though, it is good to
define some extra framework utility code
or components to make code generation
easier. Such a framework can be used on
top of the platform in form of libraries,
components and code templates. The
framework is not necessarily an extra bur-
den only required by the code generator.
Actually, in most cases the underlying soft-
ware architecture already utilizes various li-
braries, components or other reusable
parts that can also support code genera-
tion.

The key issue in building a code genera-
tor is how the models’ concepts are
mapped to code. The output is not defined
as concrete code but more as an example
or template. In the simplest cases, each
modelling symbol produces certain fixed
code, including the values entered into the
symbol as arguments. The generator can
also generate different code depending on
the values in the symbol, the relationships
it has with other symbols, or other infor-
mation in the model.

The generator definition should be kept
as straightforward and simple as possible.
This can be achieved by not dealing with
variation or low-level implementation is-
sues within the generator. The framework
and component library can make this task
easier by raising the level of abstraction on
the code side.

Also having domain-specific models with
correctness constraints available makes
generator definition easier: generator does
not need to check that input is correct.
Proper modularization and reuse help a
lot when building the code generator. For
example, if you can isolate variation han-
dling for different target platforms into
own modules, it becomes very simple to
widen the platform support as adding new
platform requires only new versions of
those modules, not the whole generator.

Example of generator
So far we have been discussing the differ-
ent parts of the code generation solution.
The next question of course is, how to put
them together to achieve the 100% code
generation. To understand this, consider
the listing 1, which is the generated code
for the state machine illustrated in figure 1.

First thing we see from listing 1 is that
the complexity of the state machine is hid-
den from the generator by implementing
its elementary behaviour as an abstract
framework class. The concrete state ma-
chine is then sub-classed from this abstract
class (line 5) and initialized with data from
design models in class constructor (lines 13

Fig 1: State machine with watch domain extensions

EmbeddedSystems Europe AUGUST/SEPTEMBER 2004 www.embedded.com/europe

CODE GENERATION38

- 30). This is an example of how to imple-
ment a framework counterpart for a logical
model construct.

Lines 33 – 46 are an example of code
generated for behavioural aspects of the
application. For each state transition, there
is usually as set of actions that take place
during the transition. In our Watch lan-

guage these actions are limited to cover
only basic time unit arithmetic. This leaves
us with three operations to deal with: plus,
minus and rolling. These operations are
implemented as primitive services in our
framework. When such a service is needed,
the code generator only produces a call for
it (for example, as in line 37 or line 40).

As already mentioned, domain-specific
models describe the application function-
ality in code-independent manner at a
higher level of abstraction. Therefore, the
same models let us generate code for mul-
tiple platforms. For example, C code could
be generated from the same designs: only
the generator is different, not the applica-
tion designs.

Domain-specific modelling allows faster
development, based on models of the
product rather than on models of the code.
Our example above gives one illustration.
Industrial experiences of DSM show major
improvements in productivity, lower devel-
opment costs and better quality. For exam-
ple, Nokia reports that it now develops mo-
bile phones up to 10 times faster in this
way, and Lucent - that it improves their pro-
ductivity by 3-10 times depending on the
product. The key factors contributing to
this are:
● The problem is solved only once at a
high level of abstraction and the final code
is generated straight from this solution.
● The developers’ focus shifts from the
code to the design, the problem itself.
Complexity and implementation details
can be hidden, and already familiar termi-
nology is emphasized.
● Consistency of products and lower error-
rates are achieved thanks to the better uni-
formity of the development environment
and reduced switching between the levels
of design and implementation.
● The domain knowledge is made explicit
for the development team, being captured
in the modelling language and its tool sup-
port.

Implementation of domain-specific mod-
elling and code generation is not an extra
investment if you consider the whole cycle
from initial design to working code. Rather,
it saves development resources: tradition-
ally all developers work with the domain
concepts and map them to the implemen-
tation concepts manually. And among de-
velopers, there are big differences. Some
are experts, but most are not. So let the ex-
perienced developers define the concepts
and mapping once, and others need not do
it again. A code generator that is defined by
an expert will, no doubt, produce applica-
tions of better quality than those created
manually by average developers.

Dr. Juha-Pekka Tolvanen is the CEO of MetaCase.
He has acted as a consultant world-wide for
method development and he has published papers
on method engineering in several journals and
conferences. He can be reached at
jpt@metacase.com.

Listing 1: Code generated from state diagram illustrated in figure 1.

01 // All this code is generated directly from the model.
02 // Since no manual coding or editing is needed, it is
03 // not intended to be particularly human-readable
04
05 public class SimpleTime extends AbstractWatchApplication {
06
07 // define unique numbers for each Action (a...) and DisplayFn (d...)
08 static final int a22_1405 = +1; //+1+1
09 static final int a22_2926 = +1+1; //+1
10 static final int d22_977 = +1+1+1; //
11
12
13 public SimpleTime(Master master) {
14 super(master);
15
16 // Transitions and their triggering buttons and actions
17 // Arguments: From State, Button, Action, To State
18 addTransition ("Start [Watch]", "", 0, "Show");
19 addTransition ("Show", "Mode", 0, "EditHours");
20 addTransition ("EditHours", "Set", a22_2926, "EditHours");
21 addTransition ("EditHours", "Mode", 0, "EditMinutes");
22 addTransition ("EditMinutes", "Set", a22_1405, "EditMinutes");
23 addTransition ("EditMinutes", "Mode", 0, "Show");
24
25 // What to display in each state
26 // Arguments: State, blinking unit, central unit, DisplayFn
27 addStateDisplay("Show", -1, METime.MINUTE, d22_977);
28 addStateDisplay("EditHours", METime.HOUR_OF_DAY, METime.MINUTE,
d22_977);
29 addStateDisplay("EditMinutes", METime.MINUTE, METime.MINUTE, d22_977);
30 };
31
32 // Actions (return null) and DisplayFns (return time)
33 public Object perform(int methodId)
34 {
35 switch (methodId) {
36 case a22_2926:
37 getclockOffset().roll(METime.HOUR_OF_DAY, true, displayTime());
38 return null;
39 case a22_1405:
40 getclockOffset().roll(METime.MINUTE, true, displayTime());
41 return null;
42 case d22_977:
43 return getclockTime();
44 }
45 return null;
46 }
47 }

