

Nokia Siemens Networks Case Study
“Domain-Specific Modeling solution makes development significantly faster and easier

than the old manual coding practices,” Jari Lehto, Nokia Siemens Networks

Every architect wants developers to follow the

architecture's rules while creating and maintaining

applications. If that does not happen, the planned

architecture erodes and making changes become costly

and difficult. This becomes an even bigger challenge

when the development team grows or is located on

different sites.

While guidelines, manuals and training help, they

unfortunately cannot guarantee that the architectural

guidelines and rules are really followed. The amount

of reviews and code style checks can only be

increased so far before they become counterproductive.

Most importantly, these checks only occur after the

code has already been written.

THE SOLUTION

Good engineering practice tells us that the earlier the

architectural rules are followed, the better. Ideally this

happens right at the design stage, and is maintained

throughout the later stages. This ideal can be achieved

by codifying the architectural rules into the very

language with which applications are designed and

built.

Since the architects already know the rules, they

are the best candidates to define such a domain-

specific modeling language. The concepts and rules in

the language guide the work of the developers, help

them create good applications quickly, ensuring the

architecture is followed, and avoid creating things that

would not work or would be inefficient. The code

generators, also defined by the architects, ensure that

this quality is maintained all the way through to the

finished product.

At Nokia Siemens Networks architects have

defined a domain-specific language in this way,

encoding the architectural rules and constraints of a

particular telecommunication platform into the

modeling language and related generators.

The modeling language was built with MetaEdit+,

automatically giving NSN a top-class editing

environment for the models. Importantly for NSN,

MetaEdit+ also provides the functionality needed to

work effectively with models on an industrial scale,

such as reusing models, refactoring and replacing

model elements, organizing and handling large models,

and multi-user access.

RESULTS

Having architectural rules built in to the language and

generators gives several benefits:

 Developers follow the architecture rules and

constraints. This is particularly valuable in large

organizations and long term projects, coping well

with organizational changes.

 Changes in the architecture are easier to

introduce as architects can change the rules by

changing the modeling language and generators.

This uses the unique ability of MetaEdit+ to

update existing applications automatically to the

new language (and architecture). Developers can

also get reports on places where the application

specifications could be changed to take better

advantage of the new architecture.

 Productivity increases because the code

generators automate a large portion of the

development work.

 Changes to operating systems, libraries and

frameworks are easier to introduce because

models are made directly with architecture and

domain concepts rather than plain code concepts.

When something in the implementation platform

changes, the models remain the same, and the

entire change can be made by one person in the

generators.

 The model integration facilities of MetaEdit+

support true reuse, not just string references,

reducing the need for diff & merge.

 In addition to code, generators for documentation,

metrics etc. keep all the deliverables up-to-date

and consistent with the single source, models.

THE BIGGER PROCESS

Application design and application implementation are

parts of the wider development process: starting from

requirements and integrating with legacy code, right

through to testing and product packaging. For this

purpose the DSM solution for was extended to cover

several other phases of the development process as

illustrated below.

First, the import of basic data and message

definitions was implemented using a dedicated parser

that reads the legacy files and imports them to a

library in the modeling tool. The parser was

implemented using MetaEdit+ Reporting Language,

the same language used to build generators.

MetaEdit+ is a registered trademark of MetaCase. The other trademarked and registered trademarked names are

the property of their respective owner companies.

© MetaCase, Printed 2015

With the definitions imported, application developers

could refer to legacy data directly while modeling:

imported data would thus behave like any other model

element. In addition to generating the C and Java code

(for the GUI) a number of other generators were also

provided, such as document generation and model

checking. Generators were also defined to produce

packaging and make files. It was also beneficial that

generators can be used for model-level debugging and

testing: application designs are then animated along

the program execution.

CONCLUSION

Compared to the earlier manual coding practices, the

DSM solution makes development significantly faster

and easier. Training needs are also reduced, as

application developers don't need to master the

architecture details and underlying framework.

Equally importantly, the architectural rules codified in

the modeling language and code generators improve

the quality of the applications, better guaranteeing that

the architecture and coding rules are actually followed.

These are significant improvements, especially when

considering the amount of resources needed to

implement the automation: one man-week.

YOUR NEXT STEP

Visit us at http://www.metacase.com to see how

MetaEdit+ can speed up your software development!

info@metacase.com

www.metacase.com

