

 WHITE PAPER

DOMAIN-SPECIFIC MODELING
WITH METAEDIT+:

10 TIMES FASTER THAN UML

Ylistönmäentie 31

FI–40500 Jyväskylä, Finland

Phone +358 400 648 606

E-mail: info@metacase.com

WWW: http://www.metacase.com

© 2018 MetaCase 1

DOMAIN-SPECIFIC MODELING
WITH METAEDIT+:

10 TIMES FASTER THAN UML

Abstract

Domain-Specific Modeling (DSM) raises the level of abstraction beyond

programming by specifying the solution directly using domain concepts. The

final products are generated from these high-level specifications. This

automation is possible because both the language and generators need fit the

requirements of only one company and domain. In this paper we describe

why DSM is faster and how to build a DSM language and generator using

MetaEdit+.

1 INTRODUCTION

It has been recognized for many years that there is a vital difference between an

application’s problem domain and its code (Jackson 1995). These are two different

worlds, each with its own language, experts, ways of thinking etc. A finished application

forms the intersection between these worlds. The difficult job of the software engineer is

to build a bridge between these worlds, at the same time as solving problems in both

worlds. In this article we will look at how that job can be made easier by focusing more

on the problem domain (or just “domain” for brevity).

Figure 1 shows four different ways in which this bridge building has occurred:

how developers have moved from an initial domain idea to a finished product. In all

cases the problem has initially been expressed in the terms of the domain, and had to be

solved in those terms: what had to be done rather than how it would be done. In the first

two cases this solution was then mapped to the world of the implementation platform

and implemented there. The invention of more powerful chips, assemblers, and

compilers steadily narrowed the domain-product gap from the right inwards, allowing

the final ‘hand-made’ artifacts of the designer to be at a higher and higher level of

abstraction. These artifacts could then automatically be transformed into the finished

product.

The introduction of modeling languages such as UML changed surprisingly little

(Sprinkle et al. 2009, Kelly & Tolvanen 2008). The problem must still be solved first in

domain terms with little or no tool support. This is because UML does not relate directly

to the application domain (e.g. mobile phones, car infotainment systems, medical

devices, point-of-sale systems etc.) but to the implementation, i.e. it visualizes the code.

Therefore, the domain solution must be mapped to the core UML models representing

the implementation in code, from which in general a relatively small percentage of the

finished code can be automatically generated. The developer must then fill in the

© 2018 MetaCase 2

method bodies by hand: the largest part of the implementation. Thus the developer still

has to solve the problem twice: once in domain terms (often in his head and on the

backs of envelopes), and once in code terms. He still has to perform the mapping from

the domain solution to the code solution, now with an extra ‘stepping stone’ of UML —

planted firmly near the code side. In fact, in cases where UML models do not provide

adequate mappings to code, the developer must now solve the problem three times!

Figure 1. Moving from domain idea to finished product

Primarily from industry, there have been moves towards a way of building software that

removes this resource-intensive and error-prone mapping and double (or even triple)

problem solving. The ideal is that a developer would be able to develop the solution

once only, as a model in domain terms, from which the finished product is

automatically generated. Such an approach has already been seen to work very

effectively in a range of situations, most notably in embedded systems and product

families (Sprinkle et al 2009, Tolvanen & Kelly 2016). In this paper we first describe

how domain-specific methods work and then look at the main experiences from the

users of these methods.

To achieve our ideal in a given domain, we must provide three things: a

modeling language specific to that domain, a tool for building models in that language,

and automatic code generation from models in that language to appropriate

implementation code. In this paper we will discuss the support offered by MetaEdit+ in

creating such languages and tools for visual modeling and code generation.

© 2018 MetaCase 3

2 DOMAIN-SPECIFIC METHODS

In DSM, the model elements represent things in the domain world, not the code world.

The modeling language follows the domain abstractions and semantics, allowing

modelers to perceive themselves as working directly with domain concepts. The rules of

the domain can be included into the language as constraints, ideally making it

impossible to specify illegal or unwanted design models (Pohjonen & Kelly 2002).

Let’s take a small example. Suppose you manufacture digital wristwatches and

your developers make the watch applications, such as stopwatch or world time. Before

any new features can be implemented developers must design them in the watch

domain. This involves applying the terms and rules of the watch, such as buttons,

alarms, display icons, states and user’s actions. DSM applies these very same concepts

directly in the modeling language. An example of a model in such a language is shown

in Figure 2. The model represents the time setting feature: the actions a user can make

by pressing buttons, the display elements blinking, and the actions changing the time.

Figure 2. Modeling time setting feature

As Figure 2 shows all the relevant parts of the time setting feature are captured in the

model, enabling the complete code to be generated. The language also directs

developers to concentrate on the required aspects of the watch (by hiding irrelevant

parts). A complete example of this modeling language with 100% code generators is

included in the free MetaEdit+ evaluation version, available for download from

http://www.metacase.com.

Every domain is different, and so every DSM example is different too. Below

you will see other examples of DSM in different industry sectors, with an example

model and full code generated directly from the model.

© 2018 MetaCase 4

 Design with domain concepts  Generating full code to the target system

This example illustrates development of Internet of Things (IoT) applications into an

embedded device. The modeling language follows state machine and uses directly the

IoT services and device sensors as modeling constructs. The generator produces code

that can be directly uploaded and executed in the IoT device.

This example shows voice menu system development for an 8-bit microcontroller. The

DSM shows the flow-like execution of the menu system. The generator produces

assembler with the necessary functionality for memory addressing, calculation, etc.

This example shows specifying insurance and financial products. An insurance expert,

non-programmer, draws models to define different insurance products, and then

generators produce the required insurance code for a J2EE website.

Figure 3. Examples of DSM in different industry domains.

© 2018 MetaCase 5

3 GETTING STARTED WITH DSM

To get the DSM benefits of improved productivity, quality and complexity hiding, we

need to specify how the domain-specific language and generator should work (Pohjonen

& Kelly 2002). In the past, we would also have needed to implement the supporting tool

set. This was one of the main reasons holding DSM back: after all, implementing

modeling tools is hardly a core competence for most organizations. Today, the work

needed is reduced to just defining the language and generators, since MetaEdit+

provides the rest: diagramming editors, browsers, generators, multi-user and platform

support etc.

To implement DSM you need an expert developer in that domain, or a small

team of them. This would typically be an experienced developer who has already

developed several products in this domain, developed the architecture behind the

product, or has been responsible for forming the component library for the product.

Figure 4 shows the elements that must be made by the expert, along with how

they will be used by the normal user. It is important to note that only the expert has to

bridge the gap from the domain to the finished product. After that is done, other

developers are freed of that burden and can concentrate on finding a solution in the

domain.

Figure 4. Leveraging experts to enable others

3.1 Assembling the domain framework

A domain framework provides the interface between the generated code and the

underlying platform. In some cases, no extra framework code is needed: generated code

can directly call the platform components and their services are enough. Often, though,

it is good to define some extra framework utility code or components to make code

© 2018 MetaCase 6

generation easier. Such components may already exist from earlier development efforts

and products. Further developing these pieces of code into true framework code is a

relatively easy task for the expert, requiring only normal developer programming tools

and skills.

Whilst the component library here is thus nothing new, the fact that it will be

intrinsically part of the development process ensures that the components there will

actually be used (Kelly & Tolvanen 2008).

3.2 Developing the modeling language

Defining the modeling language deals with identifying the modeling concepts, the rules

that constrain the use of language and enforce correctness of models, and the notation

used to present these in models. These are usually best found from the domain

terminology, system architecture, existing system descriptions, and component services.

For the language implementation, MetaEdit+ provides a metamodeling tool suite

for entering the modeling concepts, their properties, associated rules and symbols (see

figures below). Alternatively you may specify the metamodel using graphical

metamodeling languages in MetaEdit+. The language definition is stored as a

metamodel in the MetaEdit+ repository allowing future modifications, which reflect

automatically to models and generators. The metamodel elements shown in the figures

define parts of the watch-specific modeling language (see Figure 2).

1) Define domain concepts

A DSM language should apply concepts

that map accurately to the domain

semantics. Using metamodeling tools

you enter each domain concept and

define its properties: what information

can be stored with it. Modeling concepts

required in software production (e.g.

links to components) can also be added.

The example shows the concept of watch

state and its properties, such as a display

function and blinking widget. An

example of an instance of this concept is

the ‘Edit hours’ state in Figure 2.

© 2018 MetaCase 7

2) Choose domain rules

A DSM language should follow the rules

as they exist in the domain. Once

defined, the language (enacted by the

supporting tool) guarantees that all

developers use and follow the same

domain rules. These rules are of different

kinds and typically relate to connections

between concepts, layering models,

reusing designs, etc.

The figures show the different

modeling concepts and a set of

constraints, e.g. that only one ‘From’ role

may leave each ‘Start’ object.

3) Draw notational symbols

A visual modeling language requires

symbol definitions. The watch model in

Figure 2 is one example. The notation

should illustrate as well as possible the

corresponding domain concepts’ natural

“visualization”. End-users are often the

best people to invent these symbols. The

figure shows the symbol definition for

the watch state; its shape, size, color,

property values to be shown, etc.

Figure 5. Steps for defining the domain metamodel

As the above example shows, good tools make DSM creation easy. With MetaEdit+ an

expert can define the language (or just part of it) and instantly test it by making an

example model. The expert can then concentrate on the challenge of developing the

method. MetaEdit+ automatically provides the finished modeling and code generation

environment with its editors, browsers, multi-user support etc. MetaEdit+ also delivers

the language immediately to the developers and updates existing models instantly to

reflect the changes.

© 2018 MetaCase 8

3.3 Developing the generator

Finally, we want to close the gap between the model and code world by defining the

code generator. The generator specifies how information is extracted from the models

and transformed into code. This code will be linked with the framework and compiled to

a finished executable without any additional manual effort (Kelly & Tolvanen 2008).

The generated code is thus simply an intermediate by-product on the way to the finished

product, like .o files in C compilation.

The common elements of all products made with this DSM language have

already been abstracted out from what needs to be modeled per application, into the

domain framework code shared by all applications. These common elements can range

in size from whole components down to individual groups of programming language

statements that occur commonly in code in this domain. The modeling language allows

the capture of all the remaining information necessary to build a full product, hence all

that is needed for fully working code can be found from the models.

The key issue in building a code generator is how the models concepts map to

code. The domain framework makes this task easier by raising the level of abstraction

on the code side. In the simplest cases, each modeling symbol produces certain fixed

code, including the values entered into the symbol as arguments. The generator can also

generate different code depending on the values in the symbol, the relationships it has

with other symbols, or other information in the model.

MetaEdit+ provides the necessary functionality for creating and debugging

generation scripts, and it guides the expert to access the concepts in the metamodel.

Generators can be defined using the Generator Editor (see Figure 6), or alternatively you

can use own generator and integrate it with MetaEdit+.

Make the generators

Generators insulate the modelers from

implementation aspects: programming

details, architecture, component use

and even optimization and other

compiler flags.

The example on the right

shows part of the code generation

definition: how watch models are used

to generate 100% of the required code

in Java. As an expert has specified the

generator, it produces products with

better quality than could be achieved

by normal developers by hand.

Figure 6. Defining generators

© 2018 MetaCase 9

4 CONCLUSION

Domain-Specific Modeling allows faster development, based on models of the product

rather than on models of the code. Industrial experiences of DSM show major

improvements in productivity, lower development costs and better quality. For example,

companies like EADS (MetaCase 2012), Panasonic (Safa 2007), Polar (Kärnä et al.

2009) and Elektrobit (Puolitaival et al. 2011) state that with DSM they can develop

products up to 10 times faster. The key factors contributing to this are:

 The problem is solved only once at a high level of abstraction and the final code,

configurations, tests, analysis etc. is generated straight from this solution.

 The focus of developers shifts from the code to the design, the problem itself.

Complexity and implementation details can be hidden, and already familiar

terminology is emphasized.

 Consistency of products and lower error-rates are achieved thanks to the better

uniformity of the development environment and reduced switching between the

levels of design and implementation.

 The domain knowledge is made explicit for the development team, being captured in

the modeling language and its tool support.

DSM also provides a better role for expert developers. Rather than have them help

others in fire-fighting problems in basic development tasks, or move them to a new area

and lose their expertise, they can be put to work on a problem they will find interesting

and rewarding, and which will best leverage their expertise.

Providing tool support for satisfactory modeling and generation has previously

required several man-years of work. MetaEdit+ reduces the time needed down to the

order of days or weeks. MetaEdit+ is tried and proven technology. It has been used to

build hundreds of Domain-Specific Modeling languages providing a robust, higher-

level, higher-quality way to build software.

REFERENCES

Jackson, M.A., Software Requirement & Specifications A lexicon of practice, principles and prejudices

Addison Wesley, ACM Press, 1995.

Kelly, S., Tolvanen, J-P., Domain-Specific Modeling: Enabling full code generation, Wiley, 2008.

Kärnä, J., Tolvanen, J.-P, Kelly, S. Evaluating the use of domain-specific modeling in practice.

Proceedings of the 9th OOPSLA workshop on Domain-Specific Modeling, 2009.

MetaCase, EADS Case Study, http://www.metacase.com/papers/

Pohjonen, R., Kelly, S., “Domain-Specific Modeling,” Dr. Dobbs Journal, August 2002.

Puolitaival, O.-P., Kanstrén, T., Rytky, V.-M, Saarela, A. Utilizing Domain-Specific Modelling for

Software Testing, 3rd Int. Conf. on Advances in System Testing and Validation Lifecycle, 2011.

Safa, L. The making of user-interface designer a proprietary DSM tool. In 7th OOPSLA workshop on

domain-specific modeling (DSM), 2007

Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellis, D., What kinds of nails need a domain-specific

hammer?, IEEE Software, July/Aug, 2009

Tolvanen, J-P., Kelly, S., Model-Driven Development Challenges and Solutions - Experiences with

Domain-Specific Modelling in Industry. In Proceedings of the 4th International Conference on

Model-Driven Engineering and Software Development, SCITEPRESS, 2016.

