
199

CHAPTER 6

A MATRIX EDITOR FOR A METACASE
ENVIRONMENT

This paper is published in Information and Software Technology, Vol. 36, No. 6, 1994, pp. 361–371,
and is reprinted here by kind permission of Elsevier Science–NL, Sara Burgerhartstraat 25, 1055
KV Amsterdam, The Netherlands.

200

Preface

This was the first published article of those in this thesis, and describes the
requirements for the matrix editor. The description of the matrix editor thus
departs slightly from what was actually implemented: see the postscript for
details. More importantly, the information presented here about the wider
MetaEdit+ environment is superseded by that in the other articles on the
environment. There are also some minor terminology differences, in particular
the use of ‘complex object’ instead of ‘graph’ or ‘object with a decomposition
graph’.

201

A MATRIX EDITOR FOR A METACASE
ENVIRONMENT

Steven Kelly
University of Jyväskylä

Department of Computer Science and Information Systems
P.O. Box 35

FIN–40351 Jyväskylä
Finland

email: kelly@cs.jyu.fi

Research in metaCASE or CASE shells has largely focused on supporting
methods by allowing the definition of the concepts and representational
symbols used in their diagrams. Little interest has been shown in
environments supporting representational paradigms other than diagrams,
such as matrices or (hyper-)text. The matrix in particular is often a better
format for business information systems, metamodelling, and automatic
algorithms for decomposing a system. This paper presents a set of functional
requirements for a matrix editor for a metaCASE environment, and suggests a
user interface for such an editor, using experience from the design of the
Matrix Editor for MetaEdit+, under development in the MetaPHOR project at
the University of Jyväskylä.

Keywords: metaCASE, CASE, matrix, representation independence, user
interface.

1 Introduction

Computer Aided Systems/Software Engineering or CASE tools, much-heralded
as the perfect answer to every software designer's problem, have largely failed
to have the expected effect on the field. Recent studies1,2 suggest that the main
reason for this observed lack of success has been the narrowness of their
approach, which forces the designer to use methodologies supplied as part of
the package, rather than allowing him to use and evolve those with which he is
already familiar. The response of the industry has been the so-called CASE
shells, which allow the user to specify his own methodology or metamodel, and
then to design with that3. However, still more work is needed to support the
full spectrum of methodologies, especially in the area of methods that use
matrices as a representational paradigm.

The efforts to build method independence into CASE shells are proving
successful, insofar as they allow independence from a particular method's
graphical symbols, conceptual data, and rules for creating models. This should
be extended still further to include full representational independence, so that
the user can choose among several basic representational paradigms. Such an
approach seems best served by having a multi-tool CASE shell, with each tool
able to display the conceptual information in a given paradigm — including
graphical diagram, matrix, free-form text and hypertext — and where new tools

202

can be added. Figure 1 shows the same conceptual graph represented as both a
diagram and a matrix. The matrix can be read by scanning across from a row
name, via a cell, and up to a column name, e.g. ‘Caller’ ‘O’ (outputs to)
‘TextP(hone)’. This example graph will also be used at various other points in
the paper to illustrate the concepts discussed.

Phone World

Internals

Operator

Billing

A text phone allows the deaf and the

hearing to communicate

by phone via an

operator.

Bill

Text
Phone

Exch-
ange 1Caller

Call
Charger

Op Text
Phone

Operator
Charger

Operator Operator
Phone

Exch-
ange 2 Phone Receiver

Phone World

Internals

Operator Billing

Caller TextP Exc1 OpTP Oper OpPh OpCh CallC Bill Exc2 Phon Recv

Caller O

TextP I O

Exc1 I O O

OpTP I O O

Oper I O O

OpPh I O

OpCh I I O

CallC I O

Bill I I

Exc2 I O

Phon I O

Recv I

 FIGURE 1 A Text Phone System as a Graphical Diagram and a Matrix

A notable problem in solving the 'software crisis' has been the assumption by
developers that they knew what people needed, and their consequent directing
of work along lines that are more theoretically interesting than practically
useful. It is therefore essential before building a matrix editor to ask whether
people need it, and for what purposes. In this respect, we should examine case
studies of researchers who have experienced the difficulties of using matrix
methods without a dedicated matrix editor, and can reveal the areas where
such a tool could be most useful.

Two such researchers, Bidgood and Jelley4, give compelling evidence that
a matrix editor is needed. In their case study, they used a spreadsheet

203

application as a makeshift matrix editor, putting business processes on one axis
and business data on the other, and entering in the relevant cells values
indicating whether the process created, read or updated the data. They then
performed various re-orderings of the axes by hand, and made the following
comments:

1. “With a matrix of any size, clustering the cells is a complex, iterative task”;

2. “names were replaced with code numbers to avoid [sorting based on]
preconceptions”

3. of differentiating creates, reads and updates “recording all four… produces a
cluttered-looking matrix”

4. the definitions of and divisions between individual processes had to be
worked on simultaneously with, but separately from, the matrix: any
updates to one had to be propagated by hand to the other.

5. “A matrix manipulation tool would have been extremely useful”

A matrix editor which automates the clustering and sorting provides an
effective answer to the first two problems. The ability to record all information
and choose a subset for any given display prevents the cluttering effect
mentioned in the third comment, without sacrificing useful data. The fourth
problem is solved by having a matrix editor as one tool among many accessing
the same data, so that work is consistently and automatically updated between
tools and users. The fifth comment confirms the impression given by the
preceding four, namely that a matrix editor as part of a CASE shell is sorely
needed right now for practical applications.

Similarly, previous CASE applications with matrix representations have
lacked functionality. Meta System's PSL/PSA5 (see also the paper by
Teichroew and Hershey6) could perform matrix manipulation algorithms, e.g.
to divide a system into subsystems, and produce output in matrix form, but
changes made in the matrix could not be propagated back to the database.
Cadre's Paradigm Plus7 has a matrix editor providing a view on the database,
and allows the user to add and delete relationships. However, the matrix
always covers all instances of two user-selected types in the repository: there
can be no mixing of, say, Data Flow Diagram Processes and Stores on the same
axis, still less Processes and Flows (as required by e.g. Steward's use of Two
Entity Data Flow Diagrams as matrices8). Further, the display is restricted to
greying the cell to indicate the presence of a relationship or number of
relationships: no other information can be shown. Similarly on the axis only the
name of the object can be displayed, and there is no facility for building groups,
or algorithms for decomposing the system into subsystems. Arthur Andersen's
Plan/19,10 has such functions, but is limited to their fixed set of matrix types and
single methodology.

This paper discusses the requirements for a tool to manipulate matrices as
part of a CASE shell, and looks at how ideas for such a matrix editor are
progressing in a real CASE shell, MetaEdit+. In the next section, we will look at
the MetaEdit+ CASE shell, and at the methodologies which make use of

204

matrices. After that, the functionality of a matrix editor as a tool in a CASE
shell will be described, and in the next section we describe a user interface for a
matrix editor as part of MetaEdit+. Finally conclusions are presented, along
with ideas for further research.

2 Background

2.1 Overview of MetaEdit+

2.1.1 Data model

MetaEdit+ is a multi-user, multi-tool, meta-CASE environment under
development in the MetaPHOR project11. It is based on the earlier MetaEdit,
which used the four concepts of the OPRR model12,13(described below) to model
design methods, and also as the underlying data model for the design diagrams
themselves.

• Properties, which appear as textual labels in diagrams, contain single data
entries such as a name, text field or number.

• Objects, which appear as shapes in diagrams, contain properties and model
concepts such as an Entity in an Entity Relationship Diagram or a Process in
a Data Flow Diagram.

• Relationships, which appear as lines between shapes in diagrams, contain
properties, and model concepts such as a Data Flow in a Data Flow Diagram.

• Roles, which appear as the end points of Relationships (e.g. an arrowhead),
contain properties, and model the part an Object plays in a Relationship,
such as which end of a relationship is ‘to’ and which ‘from’.

For MetaEdit+, the OPRR model has been extended to GOPRR14, for instance by
the concept of Graph, corresponding to a single diagram in other CASE tools,
and by allowing objects to have a recursive structure.

This fixed conceptual meta-metamodel forms the basis on which varied
representations of data, including not only the usual graphical diagrams but
also hypertext, text and matrices, can be built. This allows the application to
support a wider range of existing methodologies, and also allows customisation
closer to the in-house methodology of any given organisation.

2.1.2 Architecture

The basic architecture of MetaEdit+ is illustrated in Figure 2. The heart of the
environment is the MetaEngine, which handles all operations on the underlying
or conceptual data. This allows the addition of extra tools, each only
responsible for its own paradigmatically different view on the same underlying

205

data, thus introducing representation independence. A tool, as the term is used
within the MetaPHOR project, is a type of window with associated
functionality, with which a user can view and possibly alter a design in a
particular way.

Repository

MetaEngine

MetaEngine

Draw
Window

Matrix
Editor

Repository
Browser

Work
Space

Transfor-
mation Tool

Hyper-
text Tool

At this phase,
decompose the
objects into a
new graph

MetaEdit+ Matrix Editor - test

File Edit Help

S1 S2 S3 S4 S5 S6 S9 S10 S11 S12 S

Files Buffers Paper

initialise

parse

compile

print

check

report

link

cru r c c

r r

cu

cu cu

u

r rud

rr

r

r r

cud

r

ru

cu

Cell AnalysisView Model Axis

r

Format

build

Click again to select a single element

GeneralDraw structure

MatrixEdit structure

Graph

Context

GraphicsEdit MatrixEdit

GeneralDraw SpecializedDraw

contextSet
theGraph

Instance of

MetaEdit+

network

 FIGURE 2 MetaEdit+ Architecture

MetaEdit+ can run either as a single-user workstation environment, or
simultaneously on many workstation clients connected by a network to a
server. At each client is a running instance of MetaEdit+, including all its tools
and the MetaEngine, which takes care of all issues involved in communicating
with the server. At the server is a repository holding all the data contained in
models, and also metamodel, user and locking information.

The various tools communicate with each other through the MetaEngine,
and through the shared data in the repository. These tools are:

• the Work Space, which controls access to graphs and metamodels;

• the Draw Window, where graphical diagrams are edited;

• the Transformation tool, which produces textual descriptions of the entities
stored in the current model;

• the Query Editor, which allows the user to formulate graphical queries on
the database;

• the Repository Browser, which allows hierarchical access to any data stored
in the repository;

• the Hypertext subsystem, which gives the ability to add notes and links to
any design element in any other tool;

• the Matrix Editor, which is described further in the sections that follow.

206

2.2 Matrix methods

Within the field of information systems development, the use of the term
'matrix' is somewhat different from that used in mathematics. Both share the
concept of a grid of values, whose location can be specified by their
co-ordinates, an enumeration along the horizontal and vertical axes. In ISD,
this is then extended by using objects, rather than whole numbers, as each item
on an axis. These objects possess properties, and there may be some
hierarchical structure above the objects. Each element of the matrix can be any
(result of a function on some) item(s) present in the model, and is determined
by a function involving the items that exist on the axes for its row and column.

Many early software design methods had or have evolved matrix
representations. These largely fell into disuse, the graphical approach being
preferred and fashionable at that time. The development of graphical user
interfaces further favoured the use of the diagrams in CASE tools, and hence
they mainly supported the graphical side of these methods. The matrix side is
still, however, as useful as it was originally. Technology has now advanced,
especially in the area of databases, and can support a single conceptual graph
represented as both a diagram and a matrix, so the user can benefit from the
matrix representation in just those areas where it is an easier paradigm than
graphical diagrams.

Further, in fields closely related to software engineering, such as systems
and business process (re-) engineering, methods have developed that rely
heavily on matrices. Support for these is limited to proprietary, fixed-method
CASE tools, often produced by the organisation that developed the method.
This approach reduces the flexibility of the program and the ability of the user
to do things his way to best suit the current contingency.

The uses of matrices in methodologies can be divided into three classes:
those methods that use matrices as an integral part, such as IBM's Business
Systems Planning15, those that mainly use diagrams but where the use of
matrices as an alternate representation is recognised, such as Two-Entity Data
Flow Diagrams8, and methods for which there is no explicit use of matrices, but
for which applications of matrices can profitably be found.

In this section, we will look at these methods, and the uses of matrices
within them, in the above order.

2.2.1 Mainly matrices

Within the field of business engineering there are many methods which use
matrices, for instance IBM's Business Systems Planning15, Andersen
Consulting's Method/1 which is supported by their Plan/1 suite of software9,10,
information engineering16, business information characterization study17, and
relational modelling18. Also, Bidgood and Jelley4 used matrices exclusively for
their Strategic Information Systems Planning exercise.

207

2.2.2 Diagrams and matrices

Many early software design methods used matrices alongside graphical
diagrams, as an alternate representation useful for certain phases of analysis
and design. For instance, Data Flow Diagrams can be represented as N-squared
or Lano matrices19, and there is a similar mapping from Two-Entity Data Flow
Diagrams to matrices8,20. MacDonald and Palmer21 present a methodology
which includes two different matrix types, along with several complementary
diagram types. There also exist standard algorithms for representing and
manipulating Petri nets22 as matrices, including reachability, deadlock and
liveliness analyses.

2.2.3 Other uses of matrices

Whilst in graphical methods the main focus of attention is on the objects, in a
matrix we have a relationship-oriented view: most of the display is given over
to the relationships; to create a relationship requires only a single selection (as
opposed to selecting both objects in a graphical editor); any number of
relationships can be added without crowding or expanding the picture; and
relationships can be added without concern for how they must be routed
around objects.

There exist standard algorithms for manipulating a matrix to show the
interrelationship of its members, for instance transitive closure, diagonalisation
and affinity analysis. A hierarchical axis allows grouping of items, and the user
can decompose groups to reveal detail. More decompositions are possible than
in a diagram, where the overall picture quickly becomes unclear. As the
representations are in general simpler than in graphical notations, screen
operations should be faster. The matrix format can be adopted for other
formats of similar appearance, for instance displaying text in tabular format,
e.g. business information analysis and integration technique23, and ISAC24.

Finally, the matrix format is well-suited for metamodelling: the main
concern is the names of the items and the connections between them, rather
than any particular layout. Also, the number of relationships in a metamodel is
often high compared with standard models, making graphical representations
clumsy and confusing, when a matrix would still be clear (e.g. Figure 3 shows
the legal bindings of relationship (diamond), role (circle) and object (rectangle)
types for the Real Time Structured Analysis metamodel, represented as both a
diagram and a matrix).

208

Data store Data transformation Terminator Buffer Control transformation

Discrete

Discrete

Continuous Signal Signal
Activation

Deactivation

from

from
from

from
from

fromto

to

to

to
to

to

 FIGURE 3 Real Time Structured Analysis OPRR Metamodel,
as a graph (properties hidden) and a matrix (showing relationship names)

In a metamodel with several graph types, object types would be on the axes,
grouped into graph types, relationship bindings would be shown within
groups, and links between graph types (e.g. ‘Process explodes to Data Flow
Diagram’ or ‘Process shares properties with Entity’) could be inserted between
items and groups, or between items in different groups (respectively for the
examples). At this method integration level, those object types which did not
have any links outside their graph type could be hidden for compactness and
clarity.

Control
Transformation

Data
Transformation

Terminator Data Store Buffer

Control
Transformation

signal signal,
activation,
deactivation

signal signal

Data
Transformation

signal signal, discrete,
continuous

signal,
discrete

discrete signal,
discrete

Terminator signal signal, discrete
Data Store discrete
Buffer signal, discrete

209

3 Functionality

In research into metamodelling, one must constantly be aware of the distinction
between the underlying concepts contained within a model or metamodel, and
any surface level representation of those concepts. This distinction becomes felt
all the more keenly when expanding from a single-user, single-tool architecture
to a situation where many users require access to the data, and the data can be
viewed in many representations in different tools25. A similar distinction also
appears at the level of application or tool design, where the design task is
broken down into those parts concerning the underlying concepts and functions
of the tool, and those concerning the representation of that tool to the user. In
this section we will deal with the Matrix Editor with respect to the former, the
functionality, and in the next section the latter, the user interface.

3.1 Groups

One of the benefits of a matrix representation in design is that it allows a large
amount of information to be clearly arranged and manipulated at once. This
allows the designer to make a better decomposition of the problem area into
subsystems. Consequently, the matrix editor supports the operations of that
phase of design: grouping together related entities, hiding and revealing detail
at will, ordering the entities or groups by hand or automatically by algorithms,
etc.

On the instance level, in keeping with the GOPRR paradigm, these groups
are nothing more than complex objects: objects which in turn are composed of
objects and/or further complex objects. This means that the groups can freely
be used in other tools, for example in the Draw Window. On the representation
level, however, only the matrix editor need know the extra information for the
display and functionality of a hierarchical axis.

3.1.1 Decompose and condense

The decompose operation takes an object which is (or will be) made up of other
objects and shows those component objects, along with any associated
relationships. The reverse operation, condense, shows the parent object of the
selected object(s), or, if none yet exists, collects the selected object(s) together
into a new object.

Both decompose and condense take place without opening any new
windows, and therefore other surrounding objects must allow enough space for
the operation, or be moved. Whilst this presents problems in the Draw
Window, in the Matrix Editor it is nothing more than an insertion or deletion of
rows or columns: a common operation on spreadsheets, and simple to perform.

3.1.2 Explode

The explode operation, as its name suggests, is a somewhat more forceful
version of the closely-related decompose. When a complex object is exploded, a

210

new tool window opens, within which further detail of the object is revealed.
This window is not a descendant of that from which the explosion was
requested: its only connection to its invoker is that of the shared data of the
exploded object, as stored in the repository.

This definition leads unfortunately to an asymmetry: although for
decompose there is a reverse operation, namely condense, for explode there can
be no such operation. The action has been a creation rather than a change, and
thus the semantically correct reverse is simply to close the new window. This,
of course, can be accomplished by the normal Windows and tool closing
actions: as the invoking window has no control link to the new window, there
cannot and should not be the possibility to close the new window from there.

From the point of view of matrices, the explode operation is the poor
relative of the decompose and condense operations. It has no matrix-specific
functionality, merely opening a window for whatever tool the exploded object's
detail was designed in.

3.2 Representational graph type conversions

Within MetaEdit+, a representational graph is any display of the conceptual
data, as shown in a particular tool. There are several representational graph
types, including diagram (displayed in the Draw Window), and matrix (in the
Matrix Editor). As the representations of concepts in the tools are different, so
the representational data stored by each tool for its graph and components is
different. It would appear useful for parallel versions of the same conceptual
graph to be maintained automatically as different representational graph types:
a diagram, say, which could also be viewed as a matrix. However, because the
data requirements are different, any change to the data within one graph type
would normally require additional information within the other graph type,
which could be difficult to calculate automatically. For instance, adding a new
object in a matrix should cause that object to appear in the diagram, but the
position information for the object in the diagram would be missing. Sayani26

provides a good general overview of such problems.
The basic approach taken within MetaEdit+ is to allow the user to take a

representational graph of one type and create a graph of another type from it.
This ensures that should a user have a diagram-type graph, and decide he
wants to view it as a matrix, say, he can do so. Clearly he could make updates
in the matrix, and then convert this matrix to a diagram, with the same net
result as if the two had been completely linked. This process will be referred to
as a graph type conversion, to distinguish it from the transformations
performed by the Transformation tool.

Each tool is responsible for adding the representation information it needs:
in other words, the receiving tool in a conversion performs the conversion.
Thus it is also possible for particular tools to implement automatic updates: for
instance, the Draw Window could reflect the addition of a relationship and its
two roles in the Matrix Editor by simply drawing it as a straight line. In this

211

case the user could either move the line to a satisfactory place later, or invoke
the graph type conversion to rebuild all the diagram.

3.2.1 Diagram to matrix

In the most general case, creating a matrix begins with selection of the objects to
be used as axis items. For a given matrix, there may be more than two axes,
although each matrix can only display two of its axes at once, taking a slice or
projection along the others. The items along an axis are not necessarily of the
same type, and hence the possible relationships for each element in the matrix
will vary according to that element's row and column item types. Once all the
axes' object items have been chosen, the two display axes are selected, and slice
or projection operations specified for any remaining axes. The matrix can then
be drawn in its own window: a new window is opened for each new matrix.

When creating a matrix from a diagram, the choice of objects can be
partially automated. In the simplest case, all the objects in the diagram are
placed along both the x and y axes, and the roles for relationships contained in
that diagram are shown as the elements (note that because there are two cells

for each pair of objects, A → B and B → A, the elements are roles rather than
relationships). The order of objects along the axis defaults to alphabetical order
of object type then object name: other sort orders can be applied once the matrix
has been created.

It is also possible to select which types of objects or individual objects
should be included, and to build up each axis separately in this way. Multiple
diagrams can be used to form a single matrix, as indeed can any collection of
objects.

3.2.2 Matrix to diagram

When converting from a diagram to a matrix, there was little information to be
added, and for that which was required, viz. the sort order, a simple
hierarchical alphabetical order formed a useful starting point. When going
from a matrix to a diagram, however, all the position information is missing,
and the algorithms required to automatically position objects and route
relationships are long, complex, and not always effective. Despite considerable
interest in this area — di Battista et al.27 list 265 references — the problem has
remained largely unsolved, and perhaps the best approach from a metaCASE
point of view is to use a combination of one of the many minimum crossing
grid-based algorithms, and placement and direction heuristics with arguments
provided both by the metamodel and by the user. Such an approach, based on
energy functions and simulated annealing, is presented by Davidson
and Harel28.

3.2.3 Text ↔↔ matrix

As yet, no common exchange format exists for CASE matrix representations.
The CDIF standard29 deals only with conceptual data and graphical
representational, not matrix representational: however, it is possible to build a
matrix with reasonable ease from the conceptual data alone.

212

As a matrix has much in common with both spreadsheet and database
formats, it seems reasonable to adopt the common exchange format of those, at
least as a basic starting point for information portability. Thus, it should be
possible to both import and export matrices as flat format ASCII files, with
columns separated by some delimiting character (normally a TAB), and rows by
a new line. As neither the databases nor the spreadsheets support hierarchical
axes, there is no need to complicate the interface format by adding support for
these: only the lowest level axis items will be exported.

3.3 Axis algorithms

The operations which can be performed on matrices split into two classes: those
that only affect the order of items on the axis, and those that both affect the
order and can also form new groups of items. In the former class are sorting the
axis items based on the contents of one of their properties, and diagonalising
the matrix to bring the largest possible number of a type of relationship as near
as possible to the diagonal. In the latter class are the operations of affinity
analysis and transitive closure, which are explained in more detail in the
following sections.

Clearly, the user could perform the same operations as the algorithms, and
could even split a system into its subsystems in a graphical diagram. As
discussed in the introduction with reference to Bidgood and Jelley's work4, the
benefit of these automatic algorithms to the software or systems engineer is that
they are fast, accurate, and have no preconceptions about what the subsystems
should be — often such preconceptions will lead an engineer to a fair solution,
but blind him to the optimal one. However, no algorithm is perfect, and so the
user can of course fine tune the results of the orderings or groupings produced
automatically.

3.3.1 Sorting

Sorting the axis items based on their characteristics, rather than those of
relationships or roles between them, is a useful initial step in dividing up the
items into subsystems, as well as for presenting information in a logical format.
A simple alphabetical ordering is insufficient in many cases, and should be
augmented with orderings based on values of properties of the items, or the
items' types. The sort order function on these could be alphabetical, numerical,
chronological, or, for those properties which take one of a fixed set of values, by
some user-defined order on those values: for instance, in Booch's Class
Diagrams30, the items could be ordered on the common property of Visibility,
with values of Imported, Exported and Private.

Sorting can be applied either recursively inside all groups, or only on
those groups which are selected.

213

3.3.2 Diagonalisation

Diagonalisation is a simple and fast algorithm that rearranges either rows or
columns to bring cells containing a selected relationship type as close as
possible to the diagonal which runs from top left to bottom right.

Diagonalisation can be applied only on a single level of a single group:
this can of course be the whole matrix, if no groups have been defined yet. This
restriction maintains groups that the user may already have created. The result
of diagonalisation is a matrix where all elements of likely subsystems are close
together, making forming groups a simple task, whilst still allowing the user
the freedom to choose exactly where the boundaries of groups should fall. This
procedure is widely used in methods such as IBM's Business Systems
Planning15.

3.3.3 Affinity analysis

Affinity analysis is similar to diagonalisation, in that the rows or columns are
rearranged according to the relationships in the cells. However, the process is
refined one stage further by associating values with each relationship (or role)
type: the higher the value, the more the corresponding row and column items
are considered to be related. These values can be defined by the metamodel or
the user, and allow a measure of customisability to the algorithm.

Affinity analysis is normally performed on a single group at a single level,
often this would be the whole matrix. Optionally, when the operation is
performed, as well as ordering the items so the closely related elements are
adjacent, it can also form groups above the items, one for each related set. This
will remove any existing group structure above the items.

Again, the most common use would be to decompose a system into
subsystems with high cohesion and low coupling.

3.3.4 Transitive closure

Mathematically, the transitive closure of a node in a graph is that node and all
nodes which can be reached from it by following edges, hence its alternative
name, reachability analysis. For our purposes, we can use a given relationship
or relationships as valid edges, and can choose whether those relationships are
to be viewed as directed or not. Further, the transitive closure of a matrix will
be the set of the transitive closures of its axis items, using only those
relationships of chosen type(s) present in the matrix.

Like affinity analysis, transitive closure can form new groups, and is
normally performed on a single group at a single level. Transitive closure is
useful for finding what parts of a design are connected to a given part, and
hence may be affected if that part changes. It can also be used to check that
information can flow between two parts of a system, or for various analyses in
Petri net structures.

214

4 User interface

This section presents a more detailed description of a suitable user interface for
the general matrix editor described above. Thus it is important to remember
that we are dealing with one tool among the many in MetaEdit+, and
consistency of approach across all tools is desirable. For instance, the visual
cues to show that an item is selected or can explode should be similar to those
used in the Draw Window, as far as the different representational paradigms
allow.

A user interface can be thought of as consisting of two main components:
a visual interface, which is the view of the data presented to the user, and a
functional interface, which is the way the user accesses the functionality of the
operations on the data. In this section, we will look in turn at each of the areas
of the Matrix Editor, the tool window itself, the axes, the elements, and the
overlay. For each area, the user interface will be discussed, starting with the
purely visual components such as layout, then the components which are more
functional such as menus and dialogs.

4.1 Matrix Editor tool window

4.1.1 Layout

The basic display format for the matrix editor was chosen to be similar to that of
spreadsheets, thus using conventions with which most users would already be
familiar. The main difference is that the user-created axes (as opposed to the
fixed row and column names) in a spreadsheet are simply normal cells with
textual content, whereas for a matrix they are an entirely different structure,
being hierarchical rather than grid-based.

In Figure 4, a mock-up screen shot shows a matrix illustrating the types of
data access different Processes have on data Stores in a Data Flow Diagram.
The Processes are in the vertical axis on the left, with labels from their
descriptive text field, and the symbol shown above the axis. The Stores are
shown with their numbers as labels, and grouped according to the storage
medium, Files, Buffers or Paper, with the group names shown above the
contained items. The Stores numbered 7 and 8 have been hidden (indicated by
a dotted line), and 12 and 13 have yet to be assigned to any group. The element
containing the relationships between parse (a Process) and 4 (a Buffer Store)
has been selected (shown by inverse video and handles at the corners), and the
user is prompted in the bottom context-sensitive help bar to click again to allow
selection of either the read or update relationships (shown by r and u in the
element). The relationships between print and 6 have been locked by another
user, (shown by the grey background) so this user cannot alter them. The read
relationship between check and 6 can be exploded to another diagram (shown
by the rectangular outline). The scroll bars, title bar and menu bar reflect the
Windows standards.

215

MetaEdit+ Matrix Editor - test

File Edit Help

1 2 3 4 5 6 9 10 11 12 1

Files Buffers Paper

initialise

parse

compile

print

check

report

link

cru r c c

r r

cu

cu cu

u

r rud

rr

r

r r

cud

r

ru

cu

Cell AnalysisView Model Axis

r

Format

build

Click again to select a single element

 FIGURE 4 Matrix Editor Window

4.1.2 Multi-dimensional aspects

Apart from the normal two dimensional square matrix, the Matrix Editor
supports matrices formed from an n-dimensional set of data, and thus having n
axes. The number of dimensions will depend on the cardinality of
relationships, i.e. the number of roles each relationship has. Whilst most ISD
methods use only binary relationships, some, such as NIAM31, allow multi-part
relationships.

Mathematically, and hence computationally, the extension from 2 to n
dimensions presents no real difficulties; the main problem is to present the
information to the user in a manageable way. Three-dimensional space
rendered into two dimensions is a familiar concept, and the additional
information displayed outweighs the problems of interpretation in most cases.
However, manipulating a three-dimensional space rendered into two
dimensions is far more difficult, as are any actions involving higher dimensions.
Hence there seems little point in providing some kind of perspective (isometric
or otherwise) display.

The other possibility for working in two dimensions with multi-
dimensional data is to use some projection of the other dimensions into the two
dimensional plane matrix. An example would be in the three dimensional case,
where relationships are ternary (i.e. each relationship has three objects
participating in it), and we choose objects for the three axes and ask for a

216

display of relationships between those objects. In this case, a normal two-
dimensional matrix is extracted by showing only those ternary relationships
whose third member is selected on the third, undisplayed, axis, condensing the
information from all such relationships into the appropriate individual
elements of the resultant matrix. This allows precise tailoring of the
information to be displayed, as any number and distribution of objects along
the third axis can be selected.

4.1.3 Menus

The structure of the menus is intended to reflect the user's way of working, and
as such can be customised by definition in the metamodel for that method, and
later altered by each individual user. The structure shown in Table 1 is the
default, containing all possible commands. As all operations involving
selection of objects and actions can be performed by either keyboard or mouse,
accelerator keys can be defined, and each menu item has a one letter
abbreviation (not shown in the table). Similarly, some of the menu items open a
dialog, and these are followed by an ellipsis mark in the application.

 TABLE 1 Menus and Menu Items

File Edit View Model Axis Cell Format Analysis Help
New
Rename
Print
Import
Export

Undo
Cut
Copy
Paste
Delete
Find
Select
All
Extend
 selection

Hide
Show
Show All
Types
Zoom
Normal
Diagonal
Triangular
Choose
 Axes
Matrix
 Info

Properties
Explode
Objects
Relations
Roles

Before
After
Parent
Child
Format

Choose
Display
Function
Format

Text
Lines
Labels
Cell
Element

Sort
Diagonalise
Affinity
 Analysis
Transitive
 Closure

Matrix
Method
About

4.2 Axes

4.2.1 Layout

The most important feature of the axis layout, which distinguishes it from the
otherwise similar format used in traditional spreadsheets, is the hierarchy. This
is displayed as a tree structure of groups, with the area of each group extending
over that of all its members (see Figure 5). The dimensions of each row or
column and hierarchical level are user-definable, with a setting for automatic
sizing, and another for a default set of values. Similarly, the font, type style and
point size can be selected, or assigned a default value according to the level in
the hierarchy.

217

TextPhone

OpTextPhone
Operator
OpPhone

OpCharger
CallCharger

Bill

Exchange1

Exchange2
Phone

Caller

Receiver

Operator

Billing

Phone
World

Internals

 FIGURE 5 Hierarchical Axis Structure

If an item or group is hidden, then the dividing line where it would appear is
dotted: for instance, an item or set of items has been hidden between
CallCharger and Bill in the example. If there exists a hidden extension of the
hierarchy above or below a given item, then that line too is dotted: for instance,
there is a further decomposition of Caller that is hidden in the example.

4.2.2 Dialogs

Besides popup confirmation requests, there are only two dialogs for axis
operations. The first concerns showing and hiding individual items, groups,
types of items, or levels in the hierarchy. In the second dialog, the user can
select formatting for all the various elements of the axis display: lines, fonts, box
sizes, text direction (only for the vertical axis), etc.

4.3 Elements

The intersection of a given row and column pair forms a box, which we will call
a cell. Within each cell there are potentially several relationships or roles,
which we will refer to as elements: the pair of objects that define the contents of
the cell may have more than one relationship between them.

If the axes are identical, then there will be two entries for a given pair of
objects, denoted by the two ordered pairs (A,B) and (B,A): in this case, the cell at
(A,B) will contain the roles of B in any relationships between A and B, or the
relationships flowing from A to B. Where the axes are different, roles and
relationships of any direction may be contained in the cell.

4.3.1 Layout

As there are possibly several elements in the cell, the area of the cell is divided
into equal parts, and each element is assigned to one of these sub-cells. The
metamodel or user can set an upper limit on the number of sub-cells that can be

218

displayed in a cell; over this limit, the last sub-cell will show an ellipsis (…)
symbol.

The information for each element can be a property or the type of any of
the following: the row item, the column item, the relationship, or either of its
two roles (in the case where the axes are identical, only a single role is
available).

The display of an element can be selected to be a symbol, data, a character,
or an 'x' (see Table 2). The symbols are defined in the metamodel, and should
give some indication of the type of the relationship or role. Data is some text
from a property or type, and can be limited to a specific number of characters.
The single character display is dependent on the relationship or role type: the
particular character for each type is defined in the metamodel or by the user.
Finally, the display in each element can be restricted to just an 'x' to show that it
is non-empty.

 TABLE 2 Element Display Options

Symbol Data Character X

Ö voice I X

Ù 19.2 I,O X

� text O X

In addition, each cell can show further information: whether it is locked by
another user (indicated by painting the background grey), whether it is selected
(indicated by marking the corners with small squares), and whether it is the
current cell (indicated by inverting the colours). If an element of the cell can be
exploded, this is indicated by a border around its sub-cell.

4.3.2 Dialogs

Some operations in the body of the matrix, for instance copy or move, operate
on all the elements of each selected cell; others, such as displaying properties,
only operate on one of the elements of the cell. As the basic selection unit is the
cell, the user must have a way of refining that selection still further, to a single
element. This is provided by means of a dialog which displays a list of all the
elements, with that element selected which was closest to the point in the cell
where the user clicked. In the case where there is only one element in the cell,
the dialog is not required, and the choice of element or cell is determined by the
context of the operation selected.

5 Conclusions

The need for a matrix editor in a metaCASE environment is shown by the
number of widely-used methods that use matrices, the narrowness of existing
method-specific matrix tools, and the insufficiency of e.g. spreadsheets as a
substitute. For instance, Andersen Consulting's Plan/19,10 supports matrices,

219

but only for their Method/1, and the ability to form a hierarchy on an axis is
limited to a single, obligatory level: each item initially belongs to a default null
group. Similarly Bidgood and Jelley4 found it painful to work with a
spreadsheet as makeshift matrix editor: apart from the obvious problems
caused by the spreadsheet not having been designed for that kind of usage, the
data in the spreadsheet could not easily be shared with that in a CASE
repository.

This paper has attempted to examine and explain some of the properties
that make matrices a useful representation in certain areas of information
systems design, to show that a metaCASE matrix editor is feasible, to present a
set of requirements for such a tool, and to suggest a user interface for it as one
tool among many in an actual application, MetaEdit+. The matrix editor
described is:

• representation independent, allowing the underlying conceptual data to be
shared with other tools and displayed in their paradigm — an advantage
over earlier tools such as PSL/PSA5 in which matrices were read-only output
formats;

• based on the GOPRR meta-metamodel14, rather than a single metamodel, and
so not tied to any one method — an advantage over fixed method matrix
editors such as in Plan/1;

• customisable both from the metamodel and by the user;

• structurally rather than computationally oriented, concerned more with the
relation of items to each other than producing a single value from an item or
set of items;

• similar in its visual and functional user interface to both spreadsheets (a
similar format familiar to users) and other tools in MetaEdit+ (to sharpen the
learning curve for the whole application);

• designed to answer previously recognised needs from real practical work.

The matrix editor described in this paper is currently being implemented in
Visual Works Smalltalk within the MetaPHOR project. The prototype
application will be tested within the University of Jyväskylä, and the final
product is intended to be tested in real commercial environments. Future
research with the tool will include comparison of the relative efficiencies of
matrix and diagram formats for various operations, design of new matrix
operations and methods that take advantage of representation independence,
and testing of algorithms to transform or add new information from a matrix to
a diagram.

As the concept of matrix editors in metaCASE environments is so far in its
infancy, it is to be hoped that these suggestions will serve as a starting point
from which the ideas can be further refined and developed.

220

Acknowledgements

This paper was produced as part of the MetaPHOR research project, funded by
the Academy of Finland and University of Jyväskylä. I would like to express
my thanks to the other members of the project, particularly Juha-Pekka
Tolvanen, for their help and encouragement in the research and development of
the matrix editor, and to Prof. Kalle Lyytinen and the reviewers for their helpful
comments on this paper.

References

1 Smolander, Kari, Tahvanainen, Veli-Pekka and Lyytinen, Kalle
‘How to combine tools and methods in practice — a field study’ in B
Steinholz, A Sölvberg, L Bergman (Eds), Advanced Information
Systems Engineering, proceedings of the Second Nordic Conference
CAiSE '90, Stockholm, Sweden, May 8–10, 1990, Springer-Verlag,
Berlin (1990) pp 195–214

2 Le Quesne, P N Individual and Organisational Factors in the Design
of Integrated Project Support Environments, Ph.D. Thesis, London
Business School (1990) p 260

3 Bubenko, J A Selecting a Strategy for Computer-Aided Software
Engineering (CASE), SYSLAB University of Stockholm, Stockholm,
Sweden (1988)

4 Bidgood, T and Jelley, B ‘Modelling Corporate Information Needs:
fresh approaches to the information architecture’ Journal of Strategic
Information Systems Vol 1 No 1 (Dec. 1991) pp 38–42

5 Meta Systems Ltd. PSL/PSA 6.0 User Manuals, Ann Arbor, MI (1987)
6 Teichroew, Daniel and Hershey, Ernest A III ‘PSL/PSA: A

Computer-Aided Technique for Structured Documentation and
Analysis of Information Processing Systems’ IEEE Transactions on
Software Engineering (Jan. 1977)

7 Cadre Technologies Inc. Paradigm Plus, Cadre Edition User Manuals,
Providence RI (1993)

8 Steward, Donald V Software Engineering with Systems Analysis and
Design, Brooks/Cole (1987)

9 Arthur Andersen Consulting Foundation-Method/1: Information Planning,
Version 8.0, Chicago (1987)

10 Arthur Andersen Consulting Foundation-Method/1: Documentation,
Version 8.0, Chicago (1987)

11 Kelly, S, Lyytinen, K, Marttiin, P, Oinas-Kukkonen, H, Rossi, M,
and Tahvanainen, V-P MetaPHOR: Second intermediate report,
Universities of Jyväskylä and Oulu, Finland (internal report) (1994)

12 Welke, R J ‘The CASE Repository: More than another database application’
in W W Cotterman and J A Senn (Eds) Challenges and Strategies for
Research in Systems Development, Wiley, Chichester UK (1992)

221

13 Smolander, K OPRR: A Model for Modelling Systems Development
Methods, in Licentiate Thesis WP-20, University of Jyväskylä, Finland
(1991)

14 Smolander, K GOPRR: A proposal for a meta level model
(unpublished working paper), Jyväskylä (1993)

15 IBM Corporation Business Systems Planning — Information Systems
Planning Guide, Publication #GE20-0527-4, (1975)

16 Martin, J Strategic Information Planning Methodologies, Prentice-
Hall, Englewood Cliffs, NJ (1989)

17 Kerner, D V ‘Business Information Characterization Study’ Data Base
(Spring 1979) pp 10–17

18 Vepsäläinen, A P J ‘A Relational View of Activities for Systems
Analysis and Design’ Decision Support Systems 4, North-Holland
(1988) pp 209–224

19 Lano, R J The N-Squared Chart, a TRW internal report, Redondo
Beach, CA (1977)

20 Langefors, B and Sundgren, B Information Systems Architecture,
Petrocelli / Charter, New York (1976)

21 MacDonald, I G and Palmer, I R ‘System Development in a Shared
Data Environment: the D2S2 Methodology’ in TW Olle, HG Sol, AA
Verrijn-Stuart (Eds), Information Systems Design Methodologies: a
comparative review, North-Holland (1982)

22 Peterson, J L ‘Petri Nets’ ACM Comp. Surveys Vol 9 No 4 (1977) pp
223–252

23 Carlson, W M ‘Business Information Analysis And Integration
Technique (BIAIT): a new horizon’ Data Base (Spring 1979) pp 10–17

24 Lundeberg, M ‘The ISAC Approach to Specification of Information
Systems’, in TW Olle, HG Sol, AA Verrijn-Stuart (Eds), Information
Systems Design Methodologies: a comparative review, North-Holland
(1982)

25 Venable, J R and Truex, D P, III ‘An Approach for Tool Integration in a
CASE Environment’ in Proceedings of CASE Studies 1988, Meta Systems
Ltd., Ann Arbor, MI (1988) Ref. C8812

26 Sayani, Hasan H ‘Using Graphic Front-End Tools for PSL/PSA’ in
Proceedings of CASE Studies 1988, Meta Systems Ltd., Ann Arbor, MI
(1988) Ref. C8816

27 Di Battista, G, Eades, P and Tamassia, R Algorithms for Drawing
Graphs: an Annotated Bibliography (draft), Brown Univ., RI (March
1993)

28 Davidson, R and Harel, D ‘Drawing Graphs Nicely Using Simulated
Annealing’ Technical Report, Department of Applied Mathematics
and Computer Science, The Weizmann Institute of Science, Rehovot
(1989)

29 Electronic Industries Association CDIF CASE Data Interchange
Format Interim Standards, EIA Engineering Dept., Washington (1991)

30 Booch, G Object-Oriented Design With Applications, Benjamin /
Cummings, Redwood City, CA (1991)

222

31 Nijssen, G M and Halpin, T A Conceptual Schema and Relational
Database Design: A fact oriented approach, Prentice Hall , Englewood Cli ffs,
NJ (1989)

Postscript

The actual implementation of the matrix editor followed this article closely,
with the following exceptions:

• The hierarchical axis was not implemented, because it would have implied
having a higher level graph open in the same editor as the main graph: this
gives rise to problems when considering locking in the multi-user situation.

• Following from this, viewing of decompositions does not occur within the
same window, but opens a new window.

• Multi-dimensional possibilities were omitted: there is little use for them, and
they are overly complex in practice. The rationale for multi-dimensional
matrices stemmed mainly from the need to represent ternary and higher
order relationships: these are now represented simply by showing the
relationship in all cells whose axis items are a pair of the objects involved in
the relationship.

• Extra possibilities for manipulating the display of cell contents were added:
cells can display relationships, the roles related to the horizontal axis item, or
the roles related to the vertical axis items. The initial choice is automatic,
based on whether roles or relationships in the metamodel store more
information. It is also possible to treat relationships as directed, thus a
relationship between A and B will only be shown once (at cell A-B, but not at
B-A as would normally be the case).

• A list-based tool was added for quick manipulation of large numbers of
items on the axes.

• The algorithm for calculating the cell contents from the relationships in the
graph has undergone significant evolution over the course of its life. The two
main areas of difficulty are n-ary relationships and the need for high
performance: in a 100 by 100 matrix, there are 10,000 cells to calculate. The
current algorithm is sufficiently generic that it is also used on the metamodel
level, to identify which are the legal bindings of relationships and roles that
can be created between a given set of objects.

The matrix editor has been used as a metamodelling tool, as suggested here; the
results are discussed in the article ‘Evaluating Method Engineer Performance:
An Error Classification and Preliminary Empirical Study’.

