223

CHAPTER 7

EVALUATING METHOD ENGINEER PERFORMANCE:
AN ERROR CLASSIFICATION AND
PRELIMINARY EMPIRICAL STUDY

Manuscript (submitted), 1997.
An earlier version of this paper was published in Proceedings of the 2nd International CAiSE/IFIP
8.1 Workshop on Evaluation of Modeling Methods in Systems Analysis and Design, Barcelona, 1997.

224

225

EVALUATING METHOD ENGINEER PERFORMANCE:
AN ERROR CLASSIFICATION AND
PRELIMINARY EMPIRICAL STUDY

Steven Kelly, Matti Rossi
Department of Computer Science and Information Systems
University of Jyvaskyla
P.O. Box 35
FIN—40351 Jyvaskyla
Finland
email: {kelly, mor}@cs jyu.fi
tel: +358 41 603036
fax: +358 41 603011

We describe an approach to empirically test the use of metaCASE
environments to model methods. Both diagrams and matrices have been
proposed as a means for presenting the methods. These different paradigms
may have their own effects on how easily and well users can model methods.
We extend Batra’s classification of errors in data modelling to cover
metamodelling, and use it to measure the performance of a group of
metamodellers using either diagrams or matrices. The tentative results from
this pilot study confirm the usefulness of the classification, and show some
interesting differences between the paradigms.

1 Introduction

In recent years we have seen a tremendous growth in the number of available
software development methods. As has been stated, it is a practical
impossibility to build a new CASE environment for every method, and there is
no suggestion that everyone will begin to use the same method, or even one of
a small set of methods (Bub88). The solution to this conundrum can thus lie only
in a CASE environment which can be customised to support any method. A
proposed solution, called CASE shells (Bub88) or metaCASE environments
(Ald91), has produced promising research prototypes, and recently also
commercial products. We believe that we are now at a stage where these
environments can be evaluated by users to shed light on their usability and
expressive power.

We describe an approach that can be used to empirically test the use of a
metaCASE environment in modelling systems development methods.
Modelling a method into a metaCASE environment is in itself a form of system
development, along with its own paradigms, tools and methods: we could call
these ‘meta-methods’. In evaluating such meta-methods, as with any method,
we should try to eliminate tool-centred factors, as these are not essentially part
of the method. Similarly, we should not concern ourselves with the purely
symbolic parts of the method’s representations, as these may easily be changed
without affecting the essence of the method. Rather, we should concentrate on

226

the conceptual aspects of the meta-method, i.e. the metamodelling language. It
is however possible to use completely different representational paradigms
with the same conceptual meta-method: both diagrams (Ros95) and matrices
(Kel95, Kin94) have been proposed as a means for representing metamodels.
These different paradigms may have their own effects on how easily and well
users can model methods. Most evaluations of metamodelling methods have so
far taken place on a purely conceptual level, ignoring the effects of the way that
different representational paradigms may affect method definition.

In this paper we aim to develop a research instrument that can be used to
evaluate the effects of different representational paradigms by means of a
controlled experiment of how accurately users model a method in a metaCASE
environment. In this pilot study we use one metamodelling language, but two
different representational paradigms, matrices and diagrams. Batra (Bat93)
summarised the results of four experiments which studied errors made when
performing data modelling, a similar activity to modelling methods. He
classified the errors according to the facet (type of element, e.g. entity, attribute
or relation) that was modelled, and concluded: “The analysis shows that the
modeling of different facets requires different cognitive thinking, and leads to
different types of errors”. We adapt his classification and follow his approach,
looking at each facet to see whether there is any difference in the performance
between matrix and diagram representations. We believe that the developed
classification can be used to study metamodelling errors in other settings as
well and it should be easy to adapt to other environments.

We first describe the background of the study and key terminology of
method engineering. We take Batra’s classification (Bat90) and extend it to
create a set of facets of metamodelling. Then we describe the metamodelling
task the subjects were asked to perform and use the classification to analyse our
preliminary results. Finally we conclude and provide some future research
issues.

2 Background and terminology

In its simplest form we can say that a metamodel is a conceptual model of a
development method (Bri90). Consequently, metamodelling can be defined as a
modeling process, which takes place one level of abstraction and logic higher
than the standard modeling process (Gig91). At its simplest, a metamodel
captures information about the concepts of a method and rules about how they
may be used and connected together. For example, in Data Flow Diagrams the
concepts used to model systems are processes, data stores, external entities and
data flow relationships between them. A metamodel may also include
information about the presentation forms (or signs, cf. Lep94) and uses of a
method.

MetaCASE environments are configurable CASE environments that use a
set of primitives (their meta-metamodel or metamodelling language) which

227

allow them to describe a given method, and mechanisms to implement a CASE
tool to support the defined method. Design of methodologies and of
applications systems are very comparable exercises in human endeavour: in
both cases one has to decide what data is needed and what processes are to be
supported.

Brinkkemper (Bri95) has defined method engineering as “a discipline to
design, construct and adapt methods, techniques and tools for the development
of information systems”. If the method engineering process is supported by
specific computer aided tools we call the engineering discipline Computer Aided
Method Engineering (CAME), and the supporting tools CAME tools. A person
responsible for developing and implementing method specifications is called a
method engineer (Kum92).

In this study we are interested in the utility of the CAME tools. The power
of CAME comes from the definitive power of the metaCASE environment’s
metamodelling language and the ease of use of the CAME tools for a method
engineer. Most CAME tools to date have used textual languages to represent
methods, as in the very earliest tools (e.g. see ISD85), but recently there has been
a move towards a more visual approach. The development of visual
metamodelling languages has been heavily focused on diagrammatic
paradigms, motivated by the fact that a large amount of methods themselves
use diagrammatic representations. Hofstede and Weide (Hof93) emphasise the
importance of diagrammatic formalisation in instantiating a method, and
develop a general approach for such formalisation. Smolander et al. (Smo91),
Protsko et al. (Pro89), and several others have proposed languages to represent
graphical notations of a method, their connections, and/or graphical
constraints. In addition, Kelly (Kel94) and Kinnunen et al. (Kin94) have
investigated the utilisation of a matrix format as a visual representation form
for metamodelling. In Appendix 1 we give a brief description of the MetaEdit+
tool and GOPRR metamodelling language used in this experiment.

One (implicit) assumption for the shift from a textual metamodelling
language to a visual one lies in the belief of the improved user friendliness and
accuracy. For instance, a study of data modelling with graphical E-R diagrams
and a textual language (Bat90) found “overwhelming evidence in favor of” the
graphical model for the greater correctness of the models produced. However,
no studies in the method engineering field have been performed to support this
belief, beyond a short comment in (Gol93). This necessitates empirical research,
for example laboratory experiments, not only to evaluate this belief, but also to
investigate user preferences for different visual representational paradigms.
The implementation of visual paradigms should also be improved to address
the wide spectrum of functionality which the metamodelling languages could
support. This includes, for instance, the investigation of the role of visual
languages for the querying and retrieval of reusable method fragments.

228

3 Classification of facets in metamodelling

In this chapter we develop a classification of user errors in metamodelling into
various facets. As a starting point for our classification of facets we took that
which Batra defined and used over a series of experiments (Bat90, Bat93).
Batra’s studies were of errors made while performing data modelling, i.e.
modelling the structure of data for a database, an activity very similar to
modelling methods; to our knowledge there has been no previous classification
of facets specific to metamodelling. Batra’s classification fits our needs
particularly well because it has been successfully applied to models made using
the Entity-Relationship method, from which our GOPRR method is descended.
Also, Batra’s analysis concentrated mainly on relationships, the subject of our
hypothesis.

Batra claims that the errors arise from the Hutchins, Hollan and Norman’'s
‘gulf’, or directness distance between a user’s goals and the human-computer
interface (Hut85). We can argue that the metamodelling task is in essence a
mapping task from a part of ‘reality’, which happens here to be the description
of a software development method, into a conceptual representation of the
method in a given metamodelling language and its representation forms.

We have modified Batra’s classification to make it more appropriate to
metamodelling (see table below). As properties in GOPRR are more
complicated that attributes in ER, we supplemented the ‘Descriptor” attribute
facet with a new ‘Property data type’ facet. Similarly, properties in GOPRR can
contain objects, something not found in ER: this caused the addition of a
‘Complex property type’ facet. Batra’s ‘Category’ facet representing the use of
inheritance was omitted from this analysis, because use of inheritance in
GOPRR is more a matter of taste than correctness: all inheritance hierarchies
produced by subjects were flattened before analysis. In place of the ‘Category’
facet we examined whether the right metatype was chosen for each element,
e.g. that an object was not modelled as a relationship. Other minor changes
could be made: for the relationship facets, ‘binding” would be a better name
within GOPRR, and ‘n-ary’ more accurate than “ternary’; we maintain Batra’s
naming conventions for simplicity.

The facets can usefully be grouped into those dealing with objects (O),
properties (P), and relationships (R). The last group is subdivided for the
purposes of our hypothesis into simple relationships (unary and binary, R(S)),
and complex relationships R(C).

229

Facet Description Facet in Batra?

O |1. Entity Object, Role or Relationship type yes
identified

O |2. Metatype choice E.g. Relationship modelled as Object|changed from

(object, relationship etc.) Category

O |3. Complex Property type |Is the right complex meta property |added
type used (list, combo box, reference
etc.)

P |4. Identifier Does a property uniquely identify |yes
its owner

P |5. Descriptor Are there the right set of properties |yes
for a type

P |6. Property data type Is the data type right for each added
property (String, number etc.)

R |7. Unary relationship Relationships with two roles, in yes

(S) both of which is the same object

R |8. Binary relationship Relationships with two roles, each |yes

(S) with a different object

R |9. Ternary relationship, Relationships with more than two |yes

(©)| Role cardinalities roles, either explicitly or by >1
cardinality for a role

4 Research hypothesis and scoring

In this research we wanted to shed light onto some key aspects of the usability
of advanced method engineering environments. There has been a clear move in
the field from textual or programmatic method definition formats into
graphical, matrix or form-based paradigms. We wanted to compare the
performance of these new paradigms with each other: which paradigm was
better for which facets of metamodelling. To do this, we needed to remove
other factors such as the underlying metamodelling language, symbols and
tools. We thus decided to analyse the difference between metamodelling with
the Matrix and Diagram Editors of MetaEdit+: both work with the same
underlying conceptual metamodelling language, GOPRR, and the tools are
mutually consistent in their user interface: similar menu structures, use of
popup menus, same toolbar etc. The matrix representation shows object types
on the axes of the matrix and the relationship or role types in cells: the
relationships shown in the matrix are from the object on the left axis fo the object
on the top axis. The diagram representation shows objects as rectangles,
connected by lines via roles (circles) and relationships (diamonds).

As independent variable we took the use of the matrix or diagram editor,
and as dependent variables the metamodelling correctness in each facet or area
of metamodelling. The working hypothesis was:

Matrix is better with simple relationship modelling, Diagram better otherwise

230

This hypothesis is based on observations about the readability of the models
and the ways that the diagrams and matrixes are used (Kel94). We believed that
simple relationships (i.e. unary and binary) would be easier to read in the
matrix representation, because the relationship information can be presented
more compactly in a matrix without the clutter and line crossings common in
diagram representations. For example, Figure 1 shows the legal relationships
for the objects of the Real Time Structured Analysis metamodel, represented as
both a diagram and a matrix. To find what relationships are allowed from a
Data Transformation to a Control Transformation, we can follow the grey
arrows in the matrix and read across the Data Transformation row to the
Control Transformation column, and find that only a signal relationship is
allowed. Trying to find the same information from the diagram representation
is somewhat more difficult.

Data store Data transformation | Terminato Buffer Control transformation

Data Control Terminator Buffer Data
Transformation |Transformation Store
Data signal, discrete, |signal signal, discrete |signal, discrete |discrete
Transformation |continuous
Control signal, activation, |signal signal signal
Transformation |deactivation
Terminator signal, discrete signal
Buffer signal, discrete signal
Data Store discrete

FIGURE1 Real Time Structured Analysis OPRR Metamodel,
as a graph (properties hidden) and a matrix (showing relationship names)

231

In the case of the more complex relationships (i.e. ternary or higher order), on
the other hand, we expected the diagram representation to be easier to use,
because whilst the matrix representation is still more compact, the ternary
relationship components are scattered throughout the matrix. Outside of
relationship handling, the differences between matrix and diagram formats
seemed likely to be smaller, but we envisaged diagrams performing somewhat
better because of their familiarity and more graphical nature. To test our
hypothesis we built an experiment, which is described in the next section.

A scoring scheme was developed for giving consistent scores for different
types of errors. To reduce subjectivity in analysing the metamodels we used an
automatic report to provide the conceptual metamodel from each assignment in
textual form, thus removing any effects the representational paradigm used
might have on our ability to analyse the results, and reducing the possibility of
bias towards our hypothesis in our analysis. The resulting report was in each
case compared to that of a reference ‘correct” metamodel, which had been made
by the authors and checked by an independent method engineer. As the use of
inheritance in GOPRR was allowed, but would give distorted results (there is
no ‘correct’ inheritance hierarchy) to the analysis, all inheritance hierarchies
were first flattened and purely abstract types removed before the analysis.

There may be several different acceptable ways to model a method,
depending on our approach, goals, and even personal style. Thus in our
approach to classifying ‘errors’ in modelling methods we mainly classify as
‘errors’ cases where there is a clear omission, addition, internal inconsistency or
undeniably incorrect model.

Whilst we found it relatively easy to spot correct components and
incorrect components, additions or omissions, and to decide which facet the
component belonged to, it was harder to determine how to score these
occurrences within each class. The main problem was the lack of any definite
number of correct components: although we had a reference metamodel, we
recognised that our having e.g. 4 object types did not mean that was the only
possible solution. Thus we decided to count the correctly modelled, incorrectly
modelled, unnecessarily added, and necessary but omitted components
separately for each facet in a subject’s metamodel, and to form a percentage
correctness within each facet from the number of correct components divided
by the total number of components modelled by that subject for that facet
(correct+incorrect+added+omitted). Thus we obtained percentage correctness
scores for each subject for each facet.

5 Experiment set-up and tools used

The task given to the subjects was to build a metamodel for the Class Diagram
of the Booch/Rumbaugh Unified Method (Boo95) using the Diagram or Matrix
Editor in MetaEdit+. We had originally envisaged that the task would also
include a second Diagram type, but time constraints forced us to restrict the

232

task to the Class Diagram. The Unified Method, published only one month
earlier, was chosen to ensure that previous experience with the given method
would not interfere with the results. There were 11 study subjects, who were
students from a method engineering course given at the University of Jyvaskyla
in fall 1995. Each subject had 20 hours of lectures about method engineering
before the assignment, and they had been given two hours of training with the
MetaEdit+ tools and eight hours of lessons about the GOPRR metamodelling
language it uses. The students were divided randomly into two groups to
model the Unified Method with either the matrix or the diagram editor of
MetaEdit+.

Each subject was given instructions to make the metamodel of the Class
Diagrams in a three hour modelling session. The material given them was part
of the documentation of the Unified Method from Rational (Boo95). The
students were instructed to only use the matrix or diagram editor for the task.
The task performance time was controlled and the students had no possibility
to talk to others, but they could obtain help from the researchers in possible
technical problems with the tools.

Throughout the experiment experienced users of MetaEdit+ and GOPRR
metamodellers were on hand to assist the modellers. They were instructed to
answer questions on MetaEdit+ and GOPRR, but not on issues regarding
decisions about how to model the given method. They were also instructed to
actively look for models that showed a clear misapprehension of some part of
MetaEdit+ or GOPRR, but similarly not to intervene in the case of errors in the
model of the method. The result of the modelling session was either a matrix or
diagram model of the Unified method. The results were analysed according to
criteria given in Section 3.

6 Preliminary analysis of user metamodels

The results were analysed by the authors, who first analysed one assignment
together to try to ensure that their use of the facet classification would be
similar. The remaining assignment method models were divided between the
researchers, half each, to be analysed. One subject was excluded from the
results, as he only managed to model a tiny fraction of the method. The analysis
of the remaining subjects” work has been done, but the interpretation of the
findings is still underway. Here we present preliminary results.

233

100%

0 M Diagram
- 90% T @ Matrix
3 80%
S
o 70% |
@ 60% +
(]
S 50% +
S 40% 1
)
g 30% +
S 20% 1
z 0
10% +
0% - —
2 g 3 @ s 2 > > >
£ £ 2§ £ 2 §g F E B
w 1] £ Q c = o) = =
5] S 2 o @ o= @ o
s os =B o o =
a)
Facet

FIGURE 2 Mean percentage correctness score in each facet

Figure 2 presents the mean percentage score of all diagram users, and all matrix
users, in each facet. Marked differences are few outside of the relationship
facets: the clearest is in the Identifier facet, but this is probably to be explained
by the small number of subjects and the overall lack of understanding in the
subject group of how and when to use identifiers. The modelling of identifiers
was not immediately visible in the matrix or diagram formats, and was
performed in exactly the same way in both tools, thus we can safely disregard
this as a statistical anomaly. Descriptor had the next largest difference of the
non-relationship facets, and here we see the diagram format performing better:
descriptors are immediately visible in a diagram, but in a matrix the user must
open a separate dialog to see them.

100%

90% M Diagram
b+
a2 0 E Matrix
o 80% +
T 709 +
£
o 60% +
S 50% |
1]
X 40% |
[}
2 30% +
2 20% +
<
10% +
0% -
Unary+ other
binar
y Facet

FIGURE 3 Mean score in unary and binary relationships, and elsewhere.

To test our hypothesis, we combined each subject’s scores in the unary and
binary facets, and again in all other facets, and compared the mean results of
diagram and matrix users. Figure 3 shows the results, which would tend to
support at least the first part of our hypothesis: that matrix users would be
better on unary and binary relationships (73% matrix, 54% diagram). The

234

second part of the hypothesis, that elsewhere diagrams would be better, is not
as clear (62% diagram, 60% matrix). It would be better supported if we omitted
the anomalous Identifier results (giving 71% diagram, 61% matrix);
alternatively, it may be that the matrix format did indeed perform better overall
than we had envisaged, further strengthening its claims as a metamodelling
representation paradigm.

100%
90% +
80% +
70% +
60% -
50% +
40% +
30% +
20% +
10% +

0% -

H Diagram
B Matrix

Average % score per user

1st 2nd 3rd 4th 5th
Ranking

FIGURE 4 Each user’s mean score over all facets
(best Matrix user paired with best Diagram user etc.)

Overall, taking all facets into account, users of the matrix and diagram formats
performed remarkably similarly: individual differences of subjects within a
format were much greater than those between formats, as seen in Figure 4,
which shows the overall mean score for each of the ten subjects. The mean was
60% for diagrams and 63% for matrices, with standard deviation of 16
percentage points in both cases. By a happy coincidence the best matrix user
obtained almost the same score as the best diagram user, and so on down to the
worst. Whilst this of course has in itself no statistical significance, it allows us to
give a good subjective impression of the overall similarity of performance of the
diagram and matrix users, showing each user of each format in order of mean
score in a clear head-to-head comparison.

In addition to these preliminary summary results, we have also begun
analysing the test scores in more detail using SPSS. Using different subjects for
the diagram users and matrix users gives us two independent samples,
enabling better analysis than if the same subject had performed the modelling
task with each tool. The scores in each facet are continuous interval variables
(there is no clear zero point), although it may be safer to regard them as
discrete, given that the scores are the quotient of two discrete values. The
independent variable, use of matrix or diagram, is strictly a nominal variable:
however, taking it as a binary variable with values of 0 and 1 is not unusual and
allows the use of more sophisticated statistical tests. Looking at Pearson
product-moment correlation coefficients, we see the largest correlation between
scores on objects (facets 1-3) and on properties (4-6): 0.6785 (p=0.016), followed
by that between simple relationships (7-8) and complex relationships (9): 0.4721
(p=0.084). Given our hypothesis concerned only simple relationships, we can
examine the partial correlation between use of matrix and simple relationship

235

score, controlling for the complex relationship score: this gives 0.59 (p=0.047).
The similar test for matrix and object, controlling for property scores, gives —
0.30 (p=0.44). In other words, there is a statistically significant direct
relationship (p<0.05) between the use of a matrix and the score obtained for
simple relationships, controlling for the score for other relationships; there is no
such correlation between use of matrix and scores for objects or properties.

Multiple regression results seem to show that use of matrix and ternary
score form a good predictor of unary scores (R’=0.61, significance of F = 0.038):
the ternary has partial regression coefficient B=0.53 (significance of T = 0.029)
and matrix has B=0.41 (significance of T = 0.032). If the use of matrix is excluded
from the model, the significance of T for the ternary term is no longer
meaningful (0.18).

These SPSS results remain however preliminary, subject to more detailed
examination of the data and assumptions of the statistical tests used.

7 Conclusions

In this paper we have performed a pilot study for an empirical experiment
which would analyse the wusability of different method engineering
representational paradigms. The study served as a preliminary test for our
metamodelling error classification. The classification was developed from
Batra’s error facet classification for database design (Bat90).. We found our
extension of Batra’s classification to be a useful tool, and believe that it can be a
valuable aid in empirical evaluation of metamodelling languages and tools.
Comparing our results with Batra’s, we find some overall similarities, but a
striking difference in the property group of facets. Batra’s subjects were
“usually successful” in modelling attributes, whereas that was the worst area
for our subjects: a mean score of 49% compared to 65% for relationships and
71% for objects. This is probably due to the greater variety and complexity of
properties used in modelling methods than in data modelling, or maybe the fact
that the attributes do not have a separate representation in GOPRR.

On the basis of this pilot study we can make some tentative conclusions
about the performance of matrix and diagram formats for metamodelling, and
use these to generate hypotheses for further research to confirm the findings.
We believe that this kind of approach can give us important feedback about the
performance and usability of method engineering tools. This kind of research is
needed, because there is a lack of empirical evidence for the claimed usefulness
and ease of use of metamodelling and method engineering environments.

Our initial findings tend to support our hypothesis that the matrix is a
better format for working with simple relationship types in metamodels, whilst
in other areas the diagram format seems to perform slightly better. Due to the
small sample size (n = 10), however, these results cannot be regarded as
conclusive. Should further research confirm these findings, we can draw at least
two practical conclusions:

236

« CAME environments should support more than one representation
paradigm for metamodelling, as different parts of the metamodelling task
are better performed by some paradigms than others.

* When metamodelling with matrix and diagram tools, it would be useful to
perform most work in the diagram tool, but addition of simple (unary and
binary) relationships could best be performed while viewing the metamodel
as a matrix.

The latter result is doubly important for binary relationships, as (1) these form
the bulk of all relationships in general in methods, and (2) they had the second
worst overall percentage score for both diagram and matrix users (after
identifier and descriptor respectively).

To confirm our tentative findings from this experiment we would need to
extend the setting in three ways: a larger number of participants, larger
metamodel, and greater method engineer experience. Another extension would
be to include more metamodelling paradigms, such as textual and form-based:
this would give further guidance to metamodellers as to which paradigm to use
when, and to CAME environment designers as to which tools to include. When
using multiple paradigms for metamodelling there would be important effects
from how well integrated the paradigms were in the CAME environment.
Studies should thus also be performed on CAME environment use with
multiple paradigms: does switching between paradigms form a problem for the
method engineer, possibly even outweighing the benefits of the different
paradigms for different tasks.

Another approach to analysing how well method engineers perform with
different paradigms could be a comprehension task, such as the ones described
in (Par96). Because a comprehension task uses a predefined model from which
the subjects find answers to predefined questions, assessing the results would
be easier. It would shed light on the problems of interpreting the metamodels,
whereas here we analysed the problems of developing the metamodels.

References

Ald91 Alderson, Albert, “Meta-CASE Technology,” pp. 81-91 in Software
Development Environments and CASE Technology, A. Endres, H.Weber
(Ed.), Springer-Verlag, (1991).

Bat90 Batra, D., J. Hoffer and P. Bostrom, “Comparing Representations with
Relational and EER Models,” CACM 33(2) (1990) pp.126-139.

Bat93 Batra, D., “A Framework for studying human error behavior in conceptual
database modeling,” Information & Management 25 (1993) pp.121-131.

Boo95 Booch, G., J. Rumbaugh, “Unified Method for Object-Oriented Develoment,”
Rational Software Corporation, Santa Clara, US (1995).

Bri90 Brinkkemper, Sjaak, “Formalisation of Information Systems Modelling,”
Ph.D. Thesis, Univ. of Nijmegen, Thesis Publishers, Amsterdam (1990).

Bri95 Brinkkemper, Sjaak, “Method engineering: engineering of information systems
development methods and tools,” Info. & Software Tech. 37(11) (1995) p.1-6.

Bub88

Gig9ol

Gol93

Hof93

Hut85
ISD85
Kel94

Kel95

Kel96

Kin9%4

Kum92

Lep94

Par96

Pro89

Ros95

Smo91l

237

Bubenko, J. A., “A Method Engineering Approach to Information Systems
Development,” the proceedings of the IFIP WG8.1 Working Conference on
Information Systems Development Process (1988) pp.167-186.

Gigch, J. van, “Systems design and modeling and metamodeling,” Plenum
Press, New York (1991).

Goldkuhl, Goran, Stefan Cronholm, “Customizable CASE Environments: A
Framework for Design and Evaluation,” Accepted to COPE IT '93. LiTH-
IDA-R-93-42, Linkdping University, Sweden (1993).

Hofstede, A. H. M. ter, Th. P. van der Weide, “Formalisation of techniques:
chopping down the methodology jungle,” Information & Software
Technology 34(1) (1993) p.57-65.

Hutchins, E. L., J. D. Hollan and D. A. Norman, “Direct Manipulations
Interfaces,” Human Computer Interaction 1 (1985) pp.311-338.

ISDOS, “System Encyclopedia Manager, Language Definition Manager: User
Manual (SEM/LDM),” Version 1.4 (June 1985).

Kelly, Steven, “A Matrix Editor for a MetaCASE Environment,” Information
and Software Technology 36(6) (1994) pp.361-371.

Kelly, Steven, “What's in a Relationship: on distinguishing property
holding and object binding,” in Proceedings of 3rd International Conference
on Information Systems Concepts, ISCO 3, W. Hesse and E. Falkenberg
(Ed.), University of Marburg, Lahn, Germany (1995).

Kelly, S., K. Lyytinen and M. Rossi, “MetaEdit+: A fully configurable
multi-user and multi-tool CASE and CAME environment,” pp.1-21 in
Proceedings of the 8th International Conference on Advanced Information
Systems Engineering, CAISE’96, Springer-Verlag (1996).

Kinnunen, Kimmo, Mauri Leppédnen, “O/A Matrix and a Technique for
Methodology Engineering,” in Proceedings of the Fourth International
Conference on Information Systems Development, J. Zupansis and S. Wrycza
(Ed.), Moderna Organizacija, Kranj, Slovenia (1994).

Kumar, Kuldeep, Richard]. Welke, “Methodology Engineering: A
Proposal for Situation Specific Methodology Construction,” pp. 257-269
in Challenges and Strategies for Research in Systems Development,
Kottermann W. W. and Senn J. A. (Ed.), Wiley, Washington (1992).
Leppdnen, Mauri, “Metamodelling: Concept, Benefits and Pitfalls,” pp.
126-137 in Proceedings of the Fourth International Conference on Information
Systems Development,]J. Zupansis and S. Wrycza (Ed.), Moderna
Organizacija, Kranj, Slovenia (1994).

Parsons, J., “On Experimental Evaluation of Classification in Information
Modelling: Local versus Global Schemas,” Proceedings of the EMMSAD'96
Workshop, University of British Columbia, Vancouver (1996).

Protsko, L. B., P. G. Sorenson and]. P. Tremblay, “Mondrian: system for
automatic generation of dataflow diagrams,” Information and Software
Technology 31(9) (1989) pp.456—471.

Rossi, M., “The MetaEdit CAME environment,” Proceedings of the
MetaCase 95, University of Sunderland press, Sunderland (1995).
Smolander, Kari, Kalle Lyytinen, Veli-Pekka Tahvanainen and Pentti
Marttiin, “MetaEdit — A Flexible Graphical Environment for
Methodology Modelling,” pp. 168-193 in Proceedings of the Third

238

International Conference CAiSE'91, Trondheim, Norway, R. Andersen, J. A.
Bubenko jr. and A. Solvberg (Ed.), Springer-Verlag, Berlin (1991).

Wel92 Welke, R. J.,, “The CASE Repository: More than another database
application,” in Challenges & Strategies for Research in Systems Development,
W. W. Cotterman and J. A. Senn (Eds.), Wiley, Chichester UK (1992).

Appendix 1

A short description of MetaEdit+ and its GOPRR metamodelling language is
given below, for a longer discussion see (Kel96). MetaEdit+ allows the user to
specify the ISD method to be used, and to use several different tools to make
and manipulate models of the IS according to that method. These different tools
represent different representational paradigms: the same underlying conceptual
data can be shown in various formats, including graphical diagram, matrix and
table formats. The same information can be handled in a way appropriate to the
current task: for some tasks it is easier to work with the data in diagram form,
for others in matrix form. Both forms rely on the underlying conceptual
information, which contains no information about what the representation is
like. MetaEdit+ models the underlying conceptual information of both models
and metamodels with GOPRR (Kel96), which forms an evolutionary extension
of the OPRR model, used successfully in specifying methods for MetaEdit
(Wel92, Smo91). The fundamental GOPRR modeling constructs are:

« Graphs, which are aggregates of a set of objects and their connections.
Examples are an Entity Relationship Diagram or a Data Flow Diagram.

« Objects, which are considered as independent and identifiable design
objects. Examples are an Entity in an Entity Relationship Diagram or a
Process in a Data Flow Diagram.

« Properties are attributes of graphs, objects, relationships and roles. An
example is the number of a Process in a Data Flow Diagram.

 Relationships are associations between objects. An example is a Data
Flow in a Data Flow Diagram.

« Roles define the ways in which objects participate in specific
relationships. An example is the ‘to” end of a data flow relationship,
which is indicated by an arrowhead.

The GOPRR model is equally applicable to both the metamodel (type) and
model (instance) levels of CASE data, and thus is particularly well suited to a
metaCASE environment, as the same concepts can be used both for making
methods and for making models with those methods. A particular benefit is the
ability to make a model of a method on the instance level, and then transform
that by a simple mapping into a metamodel for the method on the type level.

In addition to these fundamental concepts or metatypes GOPRR also uses
some auxiliary constructs, the most important of which is binding (Kel95). A
binding specifies a relationship, a collection of roles, and for each role a
collection of objects taking part in that relationship in that role. In metamodels,
this specifies the legal ways objects can act in roles bound by relationships.

