
113

CHAPTER 3

METAEDIT+:
A FULLY CONFIGURABLE MULTI-USER AND
MULTI-TOOL CASE AND CAME ENVIRONMENT

This paper was published in Proceedings of the 8th International Conference on Advanced Information
Systems, CAiSE’96, Springer, pp. 1–21, 1996.

114

METAEDIT+
A FULLY CONFIGURABLE MULTI-USER AND

MULTI-TOOL CASE AND CAME ENVIRONMENT

Steven Kelly, Kalle Lyytinen
 Matti Rossi

Department of Computer Science and Information Systems
University of Jyväskylä

PL 35
FIN-40351 Jyväskylä

Finland
email: kelly@cs.jyu.fi
fax: +358 14 603011

Abstract: Computer Aided Software Engineering (CASE) environments have
spread at a lower pace than expected. One reason for this is the immaturity of
existing environments in supporting development in-the-large and by-many
and their inability to address the varying needs of the software developers. In
this paper we report on the development of a next generation CASE
environment called MetaEdit+. The environment seeks to overcome all the
above deficiencies, but in particular pays attention to catering for the varying
needs of the software developers. MetaEdit+ is a multi-method, multi-tool
platform for both CASE and Computer Aided Method Engineering (CAME).
As a CASE tool it establishes a versatile and powerful multi-tool environment
which enables flexible creation, maintenance, manipulation, retrieval and
representation of design information among multiple developers. As a CAME
environment it offers an easy-to-use yet powerful environment for method
specification, integration, management and re-use. The paper explains the
motivation for developing MetaEdit+, its design goals and philosophy and
discusses the functionality of the CAME tools.

Keywords: CASE, CAME, method, software engineering environments,
repository, metamodeling, conceptual modeling, object oriented modeling,
tool interoperability, tool integration

1 Introduction

CASE (Computer Aided Systems Engineering) environments have been one of
the major technological innovations in systems development during the last
decade. Many have claimed that CASE technology will solve the information
systems (IS) development problems (Cha86, McC89) that have plagued the
community for so long. These include, among others, mediocre productivity
(e.g. unrealistic time schedules and cost overruns), and insufficient quality (e.g.
low product validity and lack of verifiability) (Bro75, Cha86, Ost87). CASE
technologies are expected to provide task related support for software
developers in analyzing, designing and implementing a set of information
systems (IS) or their components according to a method. A method can be
defined as a language (vocabulary and grammatical composition rules) which

115

can be used to represent features of the information system to a number of
actors (including technical actors such as specific abstract machines like a
Smalltalk machine) and a set of rules which define by whom, when, and how
such representations are derived and/or used.

The origins of CASE date back to the mid 70’s when such well-known
software tools as PSL/PSA (Tei77) and SREM (Alf77) were launched. Despite
this early start, the breakthrough of these technologies has only occurred
during the 90’s. One reason for this is the declining cost of computing
technologies and its increasing functionality — especially graphical user
interfaces. Another is the increased need for disciplining the art of software
development and maintenance through standardized process and product
models. Finally there is a continuing need to improve the quality and
productivity of software production through investments in capital intensive
technologies.

In spite of these developments the rate of adopting CASE has been
laggard, and the success of adoptions doubtful (Wij90, Aae91). One reason for
this is software organizations’ lack of the necessary maturity to adopt highly
sophisticated technologies such as CASE. Another is the cost of adopting, using
and maintaining the technological infrastructure and associated know-how. The
third reason is the inadequate technological sophistication of CASE. Most tools
in use are stand alone tools that support creation and maintenance of graphical
models and can generate code to limited problem domains. Accordingly
technologies have not matured for software development in the large and by
many. The major deficiencies are thus: insufficient support in integrating
methods, inadequate support for alternative representation paradigms, lack of
mechanisms to cater for multiple users, rigid method and process support, and
focus on task automation (Hen90).

In this paper we report on the development and use experiences of a
prototype next generation CASE tool, MetaEdit+. The environment seeks to
overcome all the above deficiencies, but pays particular attention to the
requirements concerning flexibility, method integration and representational
richness. In line with this MetaEdit+ is a multi-method, multi-user, multi-tool
platform for both computer aided software engineering (CASE) and computer
aided method engineering (CAME). As a CASE tool it establishes a versatile
environment for flexible creation, maintenance, manipulation, retrieval and
representation of design objects (information) structured and created according
to a method. As a CAME tool it provides a flexible and easy-to-use
environment for method specification, management, integration and re-use.
This paper will explain the motivations for developing MetaEdit+, its design
goals and philosophy, its design architecture, its current tool set, and its future
development.

116

2 Related research

Weaknesses in current CASE tool support can be divided into the following
aspects:

1. lack of mechanisms for integrating sets of methods while maintaining
consistency between various models (Kel96, Mar95, Kel94a)

2. lack of support for multiple users to create, modify and delete sets of partly
overlapping model instances,

3. inadequate catering for and mapping between multiple representational
requirements such as diagrams, matrix, table and hypertext representations
(Kel96, Mar95),

4. lack of flexibility and evolvability in method support ranging from syntactic
variation in methods to crafting totally new method components (Lyy89),
and

5. insufficient catering for different information-related needs of a diverse set of
stakeholders (Mar95).

2.1 Lack of method integration mechanisms

Several mechanisms are available for method integration or interaction. At the
most rudimentary level these deal with mechanisms that enable translations
from one representation format to another. Attempts to develop such CASE
“EDI” solutions abound, e.g. CDIF (CDI91). Their weakness is that they do not
support any inter-model consistency checking, semantic validation and tool
interoperability. Accordingly, they can only be used in static model transfer
from one environment to another. A more advanced approach has been to
develop generic and universal method specification schemata. This “super-
schema” would provide a common and universal semantic model onto which
all methods used in the environments could be mapped. This can be done
directly as in the A/D Cycle information model (Mer90), or through method
reference models (Hey92) where the mapping takes place through a reference
model. An early solution of this kind was the mapping of system development
methods into generic modeling constructs of PSL/PSA (Tei77). The limitation of
this approach is its closed nature of method integration which cannot tolerate
any flexibility in the mappings. Moreover, it cannot cater for future evolution in
the method arena. Finally, it can only support a limited number of method
integration solutions which deal solely with object sharing and associated
consistency checks.

2.2 Insufficient multi-user support

A large body of literature exists on concurrency control and alternative
strategies to deal with multiple user operations in software engineering

117

repositories (for a review see Bro91). A number of strategies have emerged
recently for achieving varying levels of optimistic concurrency control (Kat84).
Despite these advances it is still not known which granularity levels are
appropriate for effective concurrency, what are suitable transaction notions,
and how much locking and what types of locks are needed. Moreover, it is not
clear how much transaction management should be left to users’ awareness of
others’ operations. In this respect, most commercial CASE environments
provide solutions that are too crude or inefficient, while advanced mechanisms
suggested by researchers can be computationally too demanding (e.g. use of
work spaces and merge strategies) or cannot be adapted to the existing CASE
architectures. Moreover, a big unsettled issue is how well semantics-driven and
dedicated locking strategies operate in such environments and whether we
should cater for differences between conceptual and representational objects, or
between the different tools that operate on the design data (Kel94a).

2.3 Insufficient support for multiple representation paradigms

Whilst today’s methods contain various representation paradigms — graphical
diagrams, matrices, tables, etc. — most existing CASE tools operate on only
one: graphical diagrams. If other representation forms are needed they are
generated by some user triggered operations such as generating a report.
Because of this, CASE tools do not offer the representation independence that
could make them fully adaptable to differing representation demands. Thus
most CASE tools offer only limited syntactic and graphical modifiability in
supported methods. Another weakness is the lack of hypertext support for
semi-structured and non-structured linking of design objects in different
representation formats or model parts. Either the available functionality
provides hypertext features as the CASE environment (Cyb92), or the support
functionality is limited to some model areas (Poh94) or to user interface and
user support (Oin93).

2.4 Lack of method modifiability and evolution

The importance of CAME in CASE has been noticed in several studies (Kum92,
Che88, Bri90, Wij91, Hey93, Ste93). To this end CASE shells metaCASE tools,
or fully customizable CASE environments have been developed. Such
environments are expected to overcome the inflexibility of method support.
According to Bubenko (Bub88) “a CASE shell includes mechanisms to define a
CASE tool for an arbitrary technique or a chain of techniques”. Yet, metaCASE
technology has not yet matured sufficiently to provide adequate method
modifiability though the number of CASE products leveraging method
modification facilities is increasing. Commercial products offering such features
include Customizer (Ind87), VSF (Poc91), MetaEdit (Smo91a) and Paradigm+
(Pro94). Research versions of CASE shells include RAMATIC (Ber89),
ConceptBase (Hah91) and MetaView (Sor88). Integration of CASE shells and their
CASE environments comes in various kinds. A CASE shell can be a separate

118

tool that produces a methodology specification which the CASE environment
uses (e.g. Customizer), or it can be an integral part of the CASE environment
(e.g. RAMATIC). MetaEdit was one of the first that offered CAME and CASE
functionality within the same tool. In MetaEdit methods are specified
graphically (Smo91b) and these specifications are converted into a textual form,
before compiling and loading the complete method specification into a CASE
environment. All these have been steps in the right direction. However,
environments that can offer powerful and easy to use modification facilities,
method component libraries, method re-use and run-time adaptability are still
largely non-existent.

2.5 Lack of information retrieval and computational facilities

One problem in current CASE tools is their limited information retrieval and
reporting capability. Some general and computationally powerful solutions
exist in environments that apply a logic programming paradigm (such as
ConceptBASE (Hah91)). Though sufficient in their expressive power and
generality the use of such query functions is limited by their computational
complexity and insufficient user-friendliness. This is due to the lack of data base
schema representations and user friendly query formulation. Another problem
is that all existing query systems center around retrieving and representing
textual information while most of the design information is input and viewed in
a graphical format. Finally, few environments provide a means to browse
through the repository via hypertext links or various browsing mechanisms.

2.6 Summary

The record of CASE research in each area demonstrates that most concerns have
been addressed during the last decade and considerable progress has been
made in rendering CASE environments useful. Yet, what seems to be lacking is
a comprehensive approach that seeks to tackle most, if not all of, these
weaknesses simultaneously. Though this may require some compromises and
difficult trade-offs in achieving all these goals (like improving multi-user
facilities and method flexibility) our contention is that the real impact of future
CASE — in the large and by many — will depend on our capability to offer
more comprehensive solutions that address most of these concerns within the
same environment. Unless such environments emerge the adoption of CASE
will in all likelihood continue to be a frustrating experience.

119

3 The MetaEdit+ environment

As a meta-CASE environment MetaEdit+ seeks to address most of the above
concerns (2.1–2.5) in a comprehensive manner by offering an environment
which is:

• multi-user, i.e. several users can operate concurrently on the repository (2.2),

• multi-tool, i.e. each user can operate several tools simultaneously where each
tool provides a different view to the same object (2.3, 2.5),

• multi-method, i.e. the environment offers several mechanisms for method
integration and consistency checking (2.1),

• multi-form, i.e. the environment provides several representation formats for
the same design object (2.3), and

• multi-level, i.e. the environment is a true metaCASE environment in that
both an IS and its design methods can be engineered within the same
environment (2.4).

The environment seeks to improve the usability (by multiple users, forms,
methods and tools), flexibility (by offering a multi-tool, multi-method
approach), and open nature of CASE (i.e. by enabling evolution and plugging of
new tools through well defined service protocols). The design goal of the
environment has been to base its architecture in principles of conceptual
modeling, layered data base architectures, and object orientation. In this respect, the
approach differs to some extent from other metaCASE approaches which focus
more on the representation of methods as first order logical theories (Hah91), or
on the graphical behavior of design objects (Ber89). From the viewpoint of
conceptual modeling the design of a method specification is akin to the
development of a conceptual schema for a software repository, and the design
of a software tool resembles a design of an external view to a conceptual
schema (ANS75). Hence, the method specification language is at the same time
the conceptual modeling language for the repository schema, or forms the
meta-metamodel level in the IRDS standard (ISO89). The adoption of full object
orientation enables flexible organization and re-use of software components in
the environment and a high level of interoperability between tools. This is
achieved through both data integration (via shared conceptual schemata) and
control integration (via object organization) thus making the environment fairly
open.

Our motivation in using conceptual modeling and object orientation in the
design of MetaEdit+ has suggested three principles for the design: data
independence, representation independence, and level independence. Data
independence is defined in a similar way as in traditional data base theory i.e.
tools operate on design information without “knowledge” of its physical
organization, or logical access structure. Representation independence forms a
continuum with data independence and it allows conceptual design objects to
exist independently of their alternative representations as text, matrix or

120

graphical representations. This principle allows flexible addition of new tools,
each one only responsible for its own paradigmatically different view on the
same underlying data. Level independence means that the environment follows a
symmetrical approach in its treatment of data and metadata. Accordingly, the
specifications of methods and their behaviors can be managed and manipulated
in a similar way to any other object in the environment (therefore the name
metaCASE). Moreover, the specifications can be concurrently operated through
the same or somewhat specialized tools in the environment.

3.1 General architecture

The functional architecture of MetaEdit+ is illustrated in Figure 1. The heart of
the environment is the MetaEngine, which handles all operations on the
underlying conceptual data through a well-defined service protocol (Smo93a).
In other words, the MetaEngine embodies the implementation of the
underlying conceptual data model and its operation signature. Accordingly,
software tools request services of the MetaEngine in accessing and
manipulating repository data. Thereby they avoid the need to duplicate the
manipulation code. This design choice allows flexible integration of new tools,
each only responsible for its own paradigmatically different view (including
operations) on the same underlying repository data. A tool, as the term is used
within the MetaEdit+ environment, is a window type with its associated
functionality, through which a user can view and possibly alter a design objects
in a particular way.

The architecture has similarities with that of the ECMA-PCTE (ECM91) —
e.g. common services, separation of components at different levels of
integration — but differs from it, most noticeably in the enforcement of no
direct communication between components at the same level, or over a
common bus between components separated by more than one level: tools
communicate only via the MetaEngine.

121

 FIGURE 1 MetaEdit+ Architecture

MetaEdit+ can run either as a single-user workstation environment, or
simultaneously on many workstation clients connected by a network to a
server. Each client has a running instance of MetaEdit+, including all its tools
and the MetaEngine. The MetaEngine takes care of all issues involved in
communicating with the server. Tools communicate with each other only
through the MetaEngine, and thereby through the shared data in the repository.
Thus the major integration mechanism applied is data integration.

The server forms the software repository holding all the data contained in
models, and also in the metamodel(s), in addition to user and locking
information. In particular the MetaEdit+ repository includes: object specification
base containing all the method specifications represented as GOPRR concepts;
symbol specification base containing all symbols needed to represent Objects,
Relationships and Roles; tool related information base containing all information
needed to represent conceptual objects in different tools (such as spatial
coordinates, or size), user information base containing all information related to
various users such as their passwords, access rights, or current locks held; report
specification base containing all report and other output specifications.

122

MetaEdit+ applies pessimistic concurrency control in dealing with user
and multi-tool interactions with the repository. We have found locks useful
despite some of their disadvantages such as stricter user control, interference
with users’ work, and poorer overall performance. The gains are greater as
locks prevent conflicts from occurring between different copies of the
repository data, help users to be warned about possible interference, and
prevent gaining access to design objects already used in another’s transaction.
All these are of utmost importance in software repositories. Transactions are
understood as long transactions. Their length is defined by a user triggered
commit operation (automatically requested by the end of the session). The
burden of deciding what to lock and when is removed from user’s
responsibilities and decided by the system. Another feature of the locking
strategy is that MetaEdit+ follows more than one level of granularity in locking
repository objects. It distinguishes locking granularities between metamodels,
graphs, conceptual objects, and representation data. It can thus achieve the
following desired features in locking: locks are acquired only when needed,
they are well-placed, and are not too small to overburden the system. During
their work users can gain information about locked objects and are thus aware
of who has locks on which design objects. Accordingly, they can coordinate
their actions through negotiating about how locks are freed and transferred.
Although no formal testing has been carried out as yet, initial experiences
suggest that with this strategy lock conflicts are surprisingly rare in normal
CASE work.

3.2 Tool architecture

In the design of the environment we have classified tools into five distinct
families according to their purpose and underlying common functionality.
From the viewpoint of conceptual data in the repository each family portrays
similar demands in terms of manipulation, locking and retrieval of conceptual
design objects, though the different representational paradigms underlying the
tools may pose additional demands on retrieval and locking. This has to be
dealt with individually in each tool. Each tool family contains one or more tools
(Figure 1). The five tool families are the following:

• Environment management tools: these tools are used to manage features of
the environment, its main components and to launch it.

• Model editing tools: these tools are used to create, modify and delete model
instances or their parts. In addition, these tools can be used to view the
model instances from different representational viewpoints, and/or to derive
new information from existing design information.

• Model retrieval tools: these tools are used for retrieving design objects and
their instances from the repository for reuse and review. These tools can
operate on both models and metamodels.

123

• Model linking and annotation tools: these tools are used for linking design
objects for traceability and memorization, annotating model instances,
finding specific “locations” in the design space, or maintaining conversations
about design issues.

• Method management tools: these tools are for method specification,
management and retrieval.

4 Conceptual data model

Because all method specifications in MetaEdit+ are interpreted as high level
conceptual models of method (or methodology) the kernel of the MetaEdit+
functionality and architecture is determined by the underlying conceptual data
model called GOPRR. MetaEdit+ uses the GOPRR conceptual data model as a
universal and generic meta-metamodel i.e. as a sole language to specify
methods. Very little if any method “knowledge” is buried into the code in tools.
In addition, GOPRR is primarily intended to model observed, interpreted and
recorded development reality as seen through the methods (including the world of
thought and abstract ideas). In this respect it differs from the ontological IS
models (see e.g. Wan93), which attempt to model what actually is, rather than
just what is perceived and recorded.

4.1 The OPRR model

Basically, GOPRR (Smo93b) forms an evolutionary extension of the OPRR
model which has been successfully used in specifying methods for MetaEdit
(Wel92, Smo91b). Whereas the original ER model (Che76) provided only
sketchy concepts of attribute: features the object can possess; and of role: the
part an object plays in a relationship; the OPRR model has defined these notions
in full.

The basic OPRR modeling constructs are:

• Objects, which consist of independent and identifiable design objects. These
typically appear as shapes in diagrams, and can have properties such as
names. Examples of objects are an Entity in an Entity Relationship Diagram
or a Process in a Data Flow Diagram.

• Properties are attributes of objects and can only be accessed as parts of
objects or relationships. Properties typically appear as textual labels in
diagrams, and they can contain single data entries such as a name, text field
or number. An example of a property is the number of a Process in a Data
Flow Diagram (Gan79).

124

• Relationships are associations between objects, and can also have properties.
Relationships typically appear as lines between shapes in diagrams, or verbs
in texts. An example of a relationship is a Data Flow in a Data Flow Diagram.

• Roles define the ways in which objects participate in specific relationships. In
diagrams roles typically appear as the end points of Relationships (e.g. an
arrowhead). Roles too can have properties. An example of a role is the
specification by directed arrow which end of a data flow relationship is ‘to’
and which ‘from’ part of the flow.

In addition OPRR provides constructs for defining cardinality constraints for
relationships (i.e. as properties of relationship meta-objects), and means to
determine properties which uniquely identify each object instance. The OPRR
model is founded on fixed mapping rules between modeling constructs and
their graphical behaviors (Ros92).

OPRR is further designed to be applicable to both the instance (model)
and the type (metamodel) levels. Thus an instance object, say a Process ‘3.1’ in a
Data Flow Diagram model, has an object type of ‘Process’ on the metamodel
level, while a flow relationship instance ‘order info’ on the model level is an
instance of a relationship type ‘Data Flow’ on the metamodel level.

4.2 Extensions in the GOPRR model

GOPRR extends OPRR as a conceptual meta-metamodel in several ways. First,
unlike OPRR the GOPRR model allows multiple representations of the same
underlying conceptual object (e.g. graphical, matrix, text), and even different
graphical representations of the same object in the same representation
paradigm. This is achieved by making available mechanisms that can override
the default representation. In this sense GOPRR forms a true conceptual
“kernel” on which varied representations of data, including not only graphical
diagrams but also hypertext, text and matrices, can be built. This allows GOPRR
to support a wide range of methodologies including matrix, table or text
oriented ones, and gives users the ability to see and manipulate design
information in a variety of representations.

Second, the conceptual modeling constructs offered by OPRR have been
extended in the GOPRR in several ways which yields a powerful but yet ease-
to-use modeling language. These new Graph, object orientation, method
integration and rule constructs are described below.

4.2.1 Concept of Graph

The GOPRR model adds the concept of Graph into the modeling constructs. A
graph denotes an aggregate concept which contains a certain set of objects and
their relationships (with specific roles). Graphs typically appear as windows on
whole diagrams which contain objects and their bindings of roles and
relationships; a graph also has its own properties. An example of a graph is a
whole Data Flow Diagram (as a whole or just one level of it). In use, the Graph
concept is fundamentally a generalized decomposition graph: it can be included

125

in a parent graph, attached to an object, role or relationship therein. For
instance, in Data Flow Diagrams a top level graph may contain a Process ‘3’,
which has a decomposition graph called ‘Decomposition of 3’, containing
Processes ‘3.1’, 3.2’ etc. Relationships from ‘1’ and ‘2’ to ‘3’ in the top level
graph are actually interface relationships, as we can specify that in the lower-
level graph they link to e.g. ‘3.2’ and ‘3.1’ respectively. The interface to the
object, and hence to the elements in its decomposition graph, can be shown in
the child graph to any degree between ‘not at all’ and ‘show copies of external
objects’. The interface is maintained distinct from the elements of the
decomposition graph itself, allowing reuse of the decomposition graph in
different parent graphs. The interface ‘specification’ remains the same in all
decompositions, but the elements attached to the interface at the higher level
can be different in different parent graphs, thus allowing reuse of the graph as a
white or black box.

The design of Graph is such that many “representational” graphs can be
made for one “conceptual” graph. For instance, a matrix and diagram
representation can be made of the same conceptual Data Flow Diagram. In this
situation changes in conceptual graphs are propagated between different tools
and their “representational” graphs according to their usefulness to the user.
Currently, objects added in one graph are immediately available to other
graphs, but not automatically added. Changes to properties are made instantly
(on transaction commit, if different users are working on different graphs), and
additions to or changes of relationships or roles are made instantly in the
relationship-oriented Matrix Editor, but buffered in the Diagram Editor, so the
user can control their layout when they are added.

The addition of the concept of Graph allows GOPRR to represent multiple
methods, and multiple models, whilst still maintaining the contents of each as a
coherent distinguishable whole. In this way graph enables modeling and
representation of recursive structures such as decompositions, or complex
objects as often found in development methods. The graph notion has also been
specialized into a modeling unit called Project, which can contain other Graphs,
and sub-projects. A Project type thus helps manage the allowed linkages
between methods used in a particular project.

It is noteworthy that all concepts included in GOPRR are designed for
reuse: both types and instances of object, relationship, role, property and graph
can be reused within other graph or project types (or instances).

4.2.2 Object orientation

Another extension, in line with object orientation is the inclusion of
generalization and specialization constructs into the GOPRR language. This
extension helps to organize complex method libraries, enhances reuse, and
together with the graph notion enables to model in economical way most
method components.

In line with object orientation objects a third extension is polymorphism of
modeling constructs: objects, relationships, roles and properties are
polymorphic in the sense that an object seen in one method as an object can be
seen in another method as a relationship, or a property. This enables method

126

component re-use and provides a powerful and flexible method integration
mechanism. In this way the method specifications can include specifications of a
set of interconnections between different IS models.

4.2.3 Method integration

In addition to decomposition and polymorphism, GOPRR also adds other
powerful method integration constructs. Objects, relationships and roles can be
reused in many different graphs: a change to the object via one graph is also
visible in the other graphs. Similarly, properties can be shared between several
objects, with changes affecting all objects referring to that property. These two
constructs allow different degrees of saying that two objects in different places
are ‘the same’: an important factor in representing the same ‘real world’ fact in
two different methods. Explosion works similarly to decomposition, but with
freer semantics. For instance, each object may have only one decomposition,
wherever it occurs, but can have multiple explosion links for every graph in
which it takes part.

4.2.4 Integrity checking rules

Finally GOPRR provides enhanced rules for checking the model integrity. It is
possible to attach rules to properties, in addition to the normal type restrictions.
For example, in modeling Data Flow Diagrams, a rule has been added to the
property ‘DFD Number’ which constrains the contents of the string property to
be a dot separated sequence of numbers, disallowing combinations like ‘Fred’,
‘2.’, ‘3..2.1’, ‘.’. It is also possible to add constraints on the collection of
properties for a given object, role, relationship, graph or project type. For
example, a rule could be added to specify that a ‘start date’ must come before
an ‘end date’ in an activity modeling diagram. These rules, too, are inherited by
descendant types, but may be overridden.

4.3 Example

Although the improvements in GOPRR are best seen with complicated
methods, for ease of understanding we take a simple Data Flow Diagram
metamodel as our example. One way to model Data Flow Diagrams with
GOPRR is to note the similarities between the various object types (i.e.
processes, externals and stores), and how they may be connected. For instance,
instances of all three object types must have a name and a description, and they
can connect via a Flow relationship with a Process. These similarities motivate
the creation of a generalized ‘DFDObject’ type, which is specialized into
‘Process’, ‘External’ and ‘Store’ types. DFDObject itself is marked so that it can
never be instantiated: it is purely an abstract type.

127

DFDObject

Store Process External

Name Description

Number

Name NameFlow Flow

From

From To

To

Decompose

 FIGURE 2 A GOPRR metamodel of Data Flow Diagrams

This inheritance hierarchy can be seen in the center of Figure 2, where the
rectangles are object types, diamonds are relationship types, circles role types,
and ovals property types. DFDObject thus has two properties, Name and
Description, and Process inherits these two and adds a third, Number. Objects
can be connected by a Flow relationship, with the proviso that one of the objects
must always be a Process: on the left, the Process is in the To role, and on the
right, in the From role.

The whole figure within the rectangle represents the Graph type of Data
Flow Diagrams. The fact that a Process can decompose to a lower-level Data
Flow Diagram is represented by the curved gray ‘Decompose’ relationship
between Process and the DFD graph type’s rectangle.

5 Method management tools

5.1 Motivation and purpose of the method management tools

In MetaEdit+ the method management tool family has been developed to ease
the creation and testing of methods, their management and evaluation support.
The primary goal of the tool family is to allow flexibility in method creation and
management and ease method construction. Therefore the environment
supports alternative ways of method engineering: 1) creation from scratch,
where all the parts of the method being defined contain new types, 2)
component oriented, where methods are constructed through using
prefabricated parts, and 3) reuse oriented, where method engineering seeks to

128

achieve maximal generality of the repository types, and then by specializing
these components derive new methods.

5.2 Design principles of method management tool family

The development of the MetaEdit+ method management tool family has been
influenced by earlier method engineering frameworks (Har93, Hey93, Ros95b,
Wel92). These frameworks have sought to consider those aspects that are
necessary in a completely functional method engineering environment.
Functionally such an environment consists of the following parts:

Assembly

Generators

Method
specification

base

Symbol
base

Report
specification

base

MetaEdit+
CASE tool
tailored for
the method

MetaEdit+
Method
Management
family

Help
generator

Method
support
generator

Report /
code
generator

Object etc.
Tools

Symbol
Editor

Consistency
checking

Metrics &
Statistics

 FIGURE 3 Method Management Tools in MetaEdit+

Below each subsystem component will be discussed in more detail.

5.2.1 Method Assembly System

This system part consists of several specialized editors and model retrieval and
analysis tools that are needed in method assembly. These tools together allow
one to specify a method’s objects and relationships and their representations, so
that they can be immediately tested within the environment. The most
important components are the metamodel editors (including object, relationship,
role, property and graph editors) by which every method’s components and
their connections are specified. Due to their different semantics and graphical
behaviors Objects, Properties, Relationships and Roles all have their own

129

specification tools. This helps to define their specialized semantics separately,
but in particular allows re-use of existing object, relationship and role
specifications. These concepts are then collected into complete method
specifications using the Graph tool. This also allows the re-use of existing graph
“patterns”. Each tool also has a dialog definition subsystem, which allows
custom definition of dialogs associated with each object type.

The Symbol Editor helps specify symbols that are used to distinguish each
object type from other object types. Symbols are defined by a specialized
drawing tool and are thereafter connected to the appropriate metamodel type.
The Symbol Editor also improves re-use as new symbols can be derived by
combining or modifying existing symbol patterns and templates retrieved from
the repository. The Consistency checking system in MetaEdit+ incorporates
several rules that ensure the syntactical completeness and consistency of the
resulting method specification. Completeness checking covers checking for
missing values and missing links between different method components.
Consistency checks verify the internal integrity of the method specification by
analyzing that the method specification does not include contradictory
specifications. The Metric & statistics system of the environment offers a number
of reports developed using the report generator tool, that analyze the method
specification (Ros94, Ros95a). The metrics reports provide a set of computed
values, which can be used to review and analyze the properties of the
specifications. Examples of metrics are the number of Object, Relationship and
Property types in the method (Tei80), and the average number of Properties or
Relationships per Object type.

5.2.2 Environment Generation System

This subsystem features several generators that help to deliver a usable and
user-friendly CASE tool by using the information contained in the method
specifications. The Method support environment generation system compiles the
method’s object specifications into parts of the metamodel repository as soon as
they have been defined. As noted above such specifications define the structure
of MetaEdit+’s repository data and the symbols to represent and forms to view
the object instances. The Method help generation system generates an on-line help
component associated with each method. This help can then be accessed
through a model editing tool interface from the repository. The generation is
based on the defined properties of the metamodel types such as a definition
what is an External and how it is used in different situations. Report and
transformation generation system is used for delivering various reports and
conducting checking on the models. These reports can be defined using the
generic report generator discussed above.

Parts not available in the current MetaEdit+ method management tool
family but recognized in the earlier frameworks are: a selection assistant for
selecting the right method or its parts for a specific project (Kum92, Har94), and
process description and support (Wij91). These needs are not currently
addressed in MetaEdit+, but there are ongoing activities in the project that aim
at adding these features.

130

5.3 An example of a method specification

Here we show how to develop part of the Data Flow Diagram metamodel. The
example depicts how the defined components of the DFD are connected
together to form the actual method. The tools used to manipulate the GOPRR
concepts in the concept specification database are form-based.

 FIGURE 4 A Graph Tool

Figure 4 shows the resulting graph specification of the DFD method. The Graph
Tool allows the user to add, remove and edit components of the method (the
components, i.e. Objects, Relationships and Roles, are modified with similar
tools) and to add and delete method connections. The window on the left shows
the definition of the DFD, its properties (i.e. model name and documentation)
and related documentation text for method help. The window in the upper
right corner of the figure shows the components of the method. The window in
the lower right corner shows the possible explosion connections between
objects in the DFD and other Graph types: Processes can be exploded into lower
level DFD’s.

6 Discussion and conclusions

The limited functionality and rigidity of the current information systems
development environments continues to pose a considerable challenge to both
academia and practice. In this paper our goal has been to demonstrate how the
prototype metaCASE environment called MetaEdit+ deals with these concerns.
Overall, we have sought to develop MetaEdit+ as a platform for trying out
different tools and tool construction principles, and also to try out the use of
object oriented architecture in designing and implementing a metaCASE tool.

131

This is well reflected in its current implementation. MetaEdit+ has been
implemented using VisualWorks Smalltalk environment using the ArtBase
object repository system and NEDT graphical programming environment, with
ENVY as code management system. By doing this, we have been able to re-use
about 70% of all code needed to implement the current functionality.

Our goal in developing MetaEdit+ environment has been to develop an
environment which:

• Supports high level specification of methods with a powerful yet easy to use
method specification language

• Has an open architecture which separates the conceptual specification of the
repository and the view (or representation) adopted in different tools and
thus conveys a high-level object-oriented API for the tool-repository
interactions

• Offers mechanisms for concurrent access of repository data through different
tools and users

• Features a comprehensive and well-organized tool set for diverse and
complex information handling tasks with some new functionality such as
matrices, hypertext tools and the query tool

• Includes flexible, and varying mechanisms for tool integration and both
vertical and horizontal method integration support

• Provides symmetrical treatment of IS models and metamodels, and thus
enables re-use, metamodel management and utilization within the same
environment

• Provides novel support for alternative representational paradigms including
matrices, and tables.

We believe that with these features MetaEdit+ addresses many flaws found in
current CASE tools. First, through its novel method integration mechanisms it
provides innovative ways to organize methods and method families into
methodologies, and also to organize methodologies with alternative levels of
connectedness and inter-method integrity constraints. Second, through its
concurrency management mechanisms MetaEdit+ is able to cater for varying
needs and demands for concurrency management for different repository
objects. Third, through its open architecture and tool interoperability MetaEdit+
can support the highly diverse representational paradigms and information
processing needs which are demanded from software engineering
environments. Fourth, through its meta-metamodel MetaEdit+ provides
flexibility and evolvability in the method specification and use which is
unmatched by any other existing metaCASE tool. Fifth, through the availability
of a varied yet uniform (in terms of user accessibility and user interface) tool set
the MetaEdit+ environment is able to cater for diverse needs of different system
development stakeholders. In this sense MetaEdit+ achieves the design goals of
better usability, improved flexibility and a open architecture.

132

Despite these advances MetaEdit+ is not currently a fully complete
environment, suitable for all types of development tasks. First, it does not
address the need for multiple distributed repositories which is typical for large
scale software development. Second, its concurrency management strategies
can be too demanding for large scale software repositories. Third, it does not
provide flexible integration mechanisms with other tools (such as electronic
publishing or CSCW tools).

Future work in MetaEdit+ will take several directions. First, we want to
expand the flexibility and evolvability to cater not only for method
representation specifications, but also process and actor models for ISD
(Mar94). Second, we will finish the ongoing implementation of the concurrency
management system and expand it with the possibility to try out alternative
concurrency management strategies which may be applicable in different
environments. The third direction is to increase the capabilities to describe
integrity constraints within and between method specifications.

On the tool and MetaEngine level the following expansions are currently
underway. The applicability of the concept of reusable graphs with ‘interface
ports’, analogous to principles encountered in chip design, will be examined on
the model and metamodel levels. The three constructs to represent different
levels of ‘two things being the same’ in a model (multiple representations of the
same concept, property sharing, hypertext links) will be examined in the light
of current practice in methods. The possibilities of polymorphism based on
bindings and metatypes will be examined further in particular as a solution to
the problems of metatype polymorphism in existing methods (e.g. objectified
associations in NIAM (Nij89), which can be viewed as both objects and
relationships). Similarly, the possibilities of the matrix paradigm will be
investigated.

To conclude, MetaEdit+ forms a bold attempt to build a versatile platform
for implementing flexible design information systems that will form the
necessary organizational memory and design resource for knowledge intensive
systems and software engineering required in the next millennium. If any
improvement has been made in realizing this vision we have achieved our
goals.

Acknowledgments

This research was in part funded by the Ministry of Education, University of
Jyväskylä, and the Academy of Finland, as the MetaPHOR project (Lyy94). We
are also grateful to our colleagues in the MetaPHOR project who have been
involved in designing and implementing some parts of the system.

133

References

Aae91 Aaen, Ivan, Carsten Sørensen, “A CASE of Great Expectations,”
Scandinavian Journal of Information Systems 3(1) (1991) pp.3–23.

Alf77 Alford, M., “A Requirements Engineering Methodology for Real Time
Processing Requirements,” IEEE Transactions on Software Engineering
3(1) (1977) pp.60–69.

ANS75 ANSI, “Study Group on Data Base Management Systems: Interim Report
75-02-08,” ACM SIGMOD Newsletter 7(2) (1975).

Ber89 Bergsten, Per, Janis Bubenko jr., Roland Dahl, Mats Gustafsson and
Lars-Åke Johansson, “RAMATIC - A CASE Shell for Implementation of
Specific CASE Tools,” Tempora T6.1 Report, first draft, SISU,
Gothenburg (1989).

Bri90 Brinkkemper, Sjaak, “Formalisation of Information Systems Modelling,”
Ph.D. Thesis, Univ. of Nijmegen, Thesis Publishers, Amsterdam (1990).

Bro75 Brooks, F., “The Mythical Man Month: Essays on Software Engineering,”
Addison-Wesley, Reading, Mass, USA (1975).

Bro91 Brown, Alan W., “Object-oriented Databases: their applications to software
engineering,” McGraw-Hill, Maidenhead UK (1991).

Bub88 Bubenko, J. A., “Selecting a Strategy for Computer-Aided Software
Engineering (CASE),” Report 59, SYSLAB, University of Stockholm,
Sweden (1988).

CDI91 CDIF, “CASE Data Interchange Format Interim Standards vol. 1-3,”
Electronic Industries Association Engineering Department (1991).

Cha86 Charette, R., “Software Engineering Environments, Concepts and
Technology,” McGraw-Hill, New York, USA (1986).

Che76 Chen, P. P., “The Entity-Relationship Model: Toward a Unified View of
Data,” ACM Transactions on Database Systems 1(1) (1976) pp.9–36.

Che88 Chen, Minder, “The Integration of Organization and Information Systems
Modeling: A Metasystem Approach to the Generation of Group Decision
Support Systems and Compute-aided Software Engineering,” PhD Thesis,
University of Arizona, Tuscon, USA (1988).

Cyb92 Cybulski, Jacob L., Karl Reed, “A Hypertext-Based Software Engineering
Environment,” IEEE Software (March 1992) pp.62–68.

ECM91 ECMA, “Reference Model for Frameworks of Software Engineering
Environments,” Technical Report ECMA TR/55, 2nd Edition (1991).

Gan79 Gane, C., T. Sarson, “Structured Systems Analysis: Tools and Techniques,”
Prentice Hall, Englewood Cliffs, NJ (1979).

Hah91 Hahn, U., M. Jarke and T. Rose, “Teamwork Support in a Knowledge-
Based Information Systems Environment,” IEEE Transactions on Software
Engineering 17(5) (1991) pp.467–481.

Har93 Harmsen, F., S. Brinkkemper, “Computer Aided Method Engineering
based on existing Meta-CASE technology,” pp. 125-140 in Proceedings
of the Fourth Workshop on The Next Generation of CASE Tools, Sjaak
Brinkkemper, Frank Harmsen (Ed.)No. 93-32, Univ. of Twente,
Enschede, the Netherlands (1993).

134

Har94 Harmsen, Frank, Sjaak Brinkkemper and Han Oei, “Situational
Method Engineering for Information System Project Approaches,” pp.
169–194 in Methods and Associated Tools for the Information Systems Life
Cycle (A-55), A. A. Verrijn-Stuart and T. W. Olle (Ed.), Elsevier Science
B.V. (North-Holland) (1994).

Hen90 Henderson, J., J. Cooprider, “Dimensions of IS Planning and Design Aids:
a functional model of CASE technology,” Information Systems Research
1(3) (1990) pp.227–254.

Hey92 Heym, M., H. Österle, “A Reference Model of Information Systems
Development,” pp. 215–240 in The Impact of Computer Supported
Technologies on Information Systems Development, K. E. Kendall, K.
Lyytinen, J. L. DeGross (Ed.), North-Holland, Amsterdam (1992).

Hey93 Heym, M., H. Österle, “Computer-aided methodology engineering,”
Information & Software Technology 35(6/7) (1993) pp.345–354.

Ind87 Index Technology Corporation, “Excelerator Reference Guide,” Index
Technology Corporation, Cambridge, USA (1987).

ISO89 ISO, “Information processing systems: Information Resource Dictionary
System (IRDS) Framework,” Draft International Standard ISO/IEC DIS
10027 (1989).

Kat84 Katz, Randy H., “Transaction Management in the Design
Environment,” in New Applications of Databases, Georges Garderin and
E Ge (Ed.), Academic Press, London UK (1984).

Kel94a Kelly, Steven, Veli-Pekka Tahvanainen, “Support for Incremental
Method Engineering and MetaCASE,” in Proceedings of the 5th
Workshop on the Next Generation of CASE Tools, B. Theodoulidis (Ed.)
Memoranda Informatica 94-25, Universiteit Twente, Enschede, the
Netherlands (1994).

Kel94b Kelly, S., “A Matrix Editor for a MetaCASE Environment,” Information
and Software Technology 36(6) (1994) pp.361–371.

Kel96 Kelly, Steven, Kari Smolander, “Evolution and Issues in MetaCASE,”
Information and Software Technology 38(4) (1996).

Kum92 Kumar, Kuldeep, Richard J. Welke, “Methodology Engineering: A
Proposal for Situation Specific Methodology Construction,” pp. 257–
269 in Challenges and Strategies for Research in Systems Development,
Kottermann W. W. and Senn J. A. (Ed.), John Wiley & Sons,
Washington (1992).

Liu95 Liu, H., “A Visual Interface for Querying a CASE Repository,” in Proc.
of the Eleventh IEEE Symposium on Visual Languages (VL'95), Darmstadt
Germany (1995).

Lyy89 Lyytinen, Kalle, Kari Smolander and Veli-Pekka Tahvanainen,
“Modelling CASE Environments in Systems Development,” in
Proceedings of the first Nordic Conference on Advanced Systems, SISU,
Stockholm (1989).

Lyy94 Lyytinen, K., P. Kerola, J. Kaipala, S. Kelly, J. Lehto, H. Liu, P.
Marttiin, H. Oinas-Kukkonen, J. Pirhonen, M. Rossi, K. Smolander, V.-
P. Tahvanainen and J.-P. Tolvanen, “MetaPHOR: Final report,”
University of Jyväskylä, Finland (1994).

135

Mar94 Marttiin, P., “Towards Flexible Process Support with a CASE shell,”
pp. 14–27 in Advanced Information Systems Engineering, Proceedings of
the Third International Conference CAiSE'94, Utrecht, The Netherlands,
June 1994, G. Wijers, S. Brinkkemper and T. Wasserman (Ed.),
Springer-Verlag, Berlin (1994).

Mar95 Marttiin, Pentti, Kalle Lyytinen, Matti Rossi, Veli-Pekka Tahvanainen
and Juha-Pekka Tolvanen, “Modeling requirements for future CASE:
issues and implementation considerations,” Information Resources
Management Journal 8(1) (1995) pp.15–25.

McC89 McClure, C., “CASE is Software Automation,” Prentice Hall, Englewood
Cliffs, NJ (1989).

Mer90 Mercurio, V. F., B. F. Meyers, A. M. Nisbet and G. Radin, “AD/Cycle
strategy and architecture,” IBM Systems Journal 29(2) (1990) pp.170-188.

Nij89 Nijssen, G. M., T. A. Halpin, “Conceptual Schema and Relational Database
Design: A fact oriented approach,” Prentice-Hall, Englewood Cliffs, NJ
(1989).

Oin93 Oinas-Kukkonen, H., “Hypertext Functionality in CASE Environments:
Preliminary Findings,” Conference on Computers and Hypermedia in
Engineering Education, Vaasa, Finland (May 24–26 1993).

Ost87 Osterweil, L. J., “Software processes are software too,” pp. 180–188 in
Proceedings of the 9th International Conference on Software Engineering
(1987).

Poc91 Pocock, John N., “VSF and its Relationship to Open Systems and
Standard Repositories,” pp. 53-68 in Software Development
Environments and CASE Technology, A. Endres, H. Weber (Ed.), No.
509, Springer-Verlag, Berlin (1991).

Poh94 Pohl, K., R. Dömges and M. Jarke, “PRO-ART: PROcess based
Approach to Requirements Traceability,” in Poster Outlines: 6th
Conference on Advanced Information Systems Engineering, Utrecht,
Netherlands, June 1994 (1994).

Pro94 ProtoSoft Inc., “Paradigm Plus/ Cadre Edition Reference Manual,”
ProtoSoft Inc. (1994).

Ros92 Rossi, M., M. Gustafsson, K. Smolander, L.-Å. Johansson and K.
Lyytinen, “Metamodeling editor as a front end tool for a case-shell,”
pp. 547–567 in Advanced Information Systems Engineering, P.
Loucopoulos (Ed.), Springer Verlag, Berlin, Germany (1992).

Ros94 Rossi, M., J.-P. Tolvanen, “Metamodeling approach to method comparison:
A survey of a set of ISD methods,” Working Paper, University of
Jyväskylä, Jyväskylä (1994).

Ros95a Rossi, M., S. Brinkkemper, “Metrics in Method Engineering,” pp. 200-
216 in Advanced Information Systems Engineering, Proceedings of the 7th
International Conference CAiSE'95, J. Iivari, K. Lyytinen and M. Rossi
(Ed.)No. 932, Springer-Verlag, Berlin (1995).

Ros95b Rossi, M., “The MetaEdit CAME environment,” Proceedings of the
MetaCase 95, University of Sunderland press, Sunderland (1995).

136

Smo91a Smolander, Kari, Kalle Lyytinen, Veli-Pekka Tahvanainen and Pentti
Marttiin, “MetaEdit — A Flexible Graphical Environment for
Methodology Modelling,” in Advanced Information Systems Engineering,
Proceedings of the Third International Conference CAiSE'91, Trondheim,
Norway, May 1991, R. Andersen, J. A. Bubenko jr. and A. Solvberg
(Ed.), Springer-Verlag, Berlin (1991).

Smo91b Smolander, Kari, “OPRR: A Model for Modelling Systems
Development Methods,” in Next Generation CASE Tools, K. Lyytinen
and V.-P. Tahvanainen (Ed.), IOS Press, Amsterdam, the Netherlands
(1991).

Smo93a Smolander, Kari, “MetaEdit+ Protocols and standard operations for
processing GOPRR information structures: the Application Programmer's
Interface,” Internal Technical Document, MetaPHOR project, Univ. of
Jyväskylä, Jyväskylä, Finland (1993).

Smo93b Smolander, Kari, “GOPRR: a proposal for a meta level model,” University
of Jyväskylä, Finland (1993).

Sor88 Sorenson, Paul G., Jean-Paul Tremblay and Andrew J. McAllister, “The
Metaview System for Many Specification Environments,” IEEE
SOFTWARE (March 1988) pp.30–38.

Ste93 Stegwee, Robert A., Ria M. C. van Waes, “Flexible CASE tools for
Information Systems Planning,” pp. 248–292 in Computer-Aided
Software Engineering — Issues and Trends for the 1990s and Beyond, T.
Bergin (Ed.), Idea Group Publishing (1993).

Tei77 Teichroew, Daniel, Ernest A. Hershey III, “PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems,” IEEE Transactions on Software Engineering
(1977).

Tei80 Teichroew, Daniel, Petar Macasovic, Ernest A. Hershey III and Yuzo
Yamamoto, “Application of the entity-relationship approach to
information processing systems modeling,” pp. 15–38 in Entity-
Relationship Approach to Systems Analysis and Design, P. P. Chen (Ed.),
North-Holland (1980).

Wan93 Wand, Yair, Ron Weber, “On the ontological expressiveness of systems
analysis and design grammars,” Journal of Information Systems (1993).

Wel92 Welke, R. J., “The CASE Repository: More than another database
application,” in Challenges and Strategies for Research in Systems
Development, William W. Cotterman and James A. Senn (Eds.) (Ed.),
Wiley, Chichester UK (1992).

Wij90 Wijers, G. M., H. E. van Dort, “Experiences with the use of CASE-tools in
the Netherlands,” Advanced Information Systems Engineering (1990)
pp.5–20.

Wij91 Wijers, G. M., “Modelling Support in Information Systems Development,”
Ph.D. Thesis, Delft University of Technology, Thesis Publishers,
Amsterdam (1991).

137

Postscript

Since this article was written the Symbol Editor has been significantly extended.
Although the article only describes the Symbol Editor in passing, the
functionality was already sufficient for the majority of methods. Symbols could
be made of a variety of shapes (lines, ellipses, polygons, splines) and labels
which held properties. In addition, role symbols specified the colour and
thickness of their line type. Text could be aligned horizontally to be left, centre
or right-justified in the box that specified the extent of the label. This state of the
Symbol Editor was largely the work of Pentti Marttiin.

After I took over development of the Symbol Editor, I added several new
features. Labels now also have vertical alignment, and their text may be
coloured. More significantly, I introduced the notion of conditional elements of
symbols: for each part (shape or label), a condition may be specified as a string
(possibly with wildcards) to match the value of a certain property. Only if the
string matches will that element be displayed. This allows modelling of the
frequent case that a symbol changes graphically according to the value of a
property, e.g. the symbol at the end of an Aggregation Whole role changes
according to the cardinality: it may be a +, a * or a circle.

I also added a new property data type to GOPRR, ‘Vector Graphic’: thus
whilst normally a property’s contents will be a string or a number, here the user
can draw a picture, diagram, map etc. The basic editor for drawing these maps
is a specialisation of the Symbol Editor. Such ‘Vector Graphic’ properties may
also be included as a ‘label’ in their object’s symbol. As might be expected, the
actual appearance of such a label is the contents of the ‘Vector Graphic’
property, scaled to fit the rectangle specified for the label. In this way more
complex symbols can be made up, allowing the modelling of more methods
with more precision. Other property data types could also be added, including
audio, still picture, video etc., although some of these would not be directly
representable in symbols.

