
138

CHAPTER 4

METAEDIT+: CASE FUNCTIONALITY TO SUPPORT
PRODUCTION, COORDINATION AND
ORGANIZATIONAL CONTROL AND INNOVATION

Manuscript (submitted), 1997

139

METAEDIT+: CASE FUNCTIONALITY TO SUPPORT
PRODUCTION, COORDINATION AND

ORGANIZATIONAL CONTROL AND INNOVATION
*

Steven Kelly, Kalle Lyytinen

Hui Liu, Pentti Marttiin, Harri Oinas-Kukkonen, Matti Rossi, Juha-Pekka Tolvanen

Abstract. Computer Aided Software Engineering (CASE) tools support
creation, maintenance, manipulation, retrieval and representation of design
information; co-ordinate task execution among developers, provide aids to
control activities; and standardise procedures and development performance.
In addition, they can foster organisational learning and innovation by
supporting creation, abstraction, sharing and maintenance of knowledge about
system development products and processes. This paper discusses what
functionality a CASE environment should have to support these functions,
and highlights the rationale behind the MetaEdit+ environment, which
attempts to implement them. We discuss the functionality of MetaEdit+ and
assess how it provides services and tools that support production, co-
ordination and organisational control and learning. All these tools are generic,
i.e. not specific to a given method: methods can be defined and modified freely
in MetaEdit+. Much of the functionality is abstracted into a central
MetaEngine, significantly reducing the work required to implement each tool.
The tool suite includes a diagram editor, a matrix editor, a table editor, a query
tool, browsing tools, a code generation and reporting tool, and hypertext and
design rationale tools. These tools use the MetaEngine services to help achieve
the functionality needed to support organisational learning and innovation.

Keywords:

D2.2 Tools and Techniques: Computer-aided software engineering (CASE)
K.6.3 Software Management: Software development
I.6.5 Model Development: Modeling methodologies
MetaCASE
Tool integration

1 Introduction

CASE (Computer Aided Systems Engineering) environments have been one of
the major technological innovations in systems development. Henderson and
Cooprider (16) classified CASE functionality into three functions, the first of
which is the production function, whereby CASE is expected to support

*

This research was in part funded by the Ministry of Education, University of Jyväskylä,
University of Oulu and the Academy of Finland. The authors’ address is Department of
Computer Science and Information Systems, University of Jyväskylä, PL 35, FIN-40351 JKL,
Finland, apart from Oinas-Kukkonen: Department of Information Processing Science,
University of Oulu, Linnanmaa, FIN-90570 Oulu, Finland. Email should be sent to
kelly@cs.jyu.fi.

140

representation, analysis, and transformation of an information system (IS) or its
components according to a method. The production function deals with the
impact of CASE on the capacity of an individual(s) to generate planning or
design decisions and subsequent artefacts or products. Second, there is the co-
ordination function, whereby CASE is expected to enable developers to plan for
and enforce rules, policies and priorities that will govern or restrict their
activities during the development process, and to enable users to exchange
information and or co-ordinate activities for the purpose of influencing the
concept, process or product of the development activity. Finally, the
organisational function covers how through embedded procedures and policies
CASE can influence the way the production and co-ordination functionalities
are enacted in a given organisational context. In this paper we recognise a
fourth, additional dimension of CASE functionality. This deals with a CASE
environment’s capacity to foster learning, and thereby incorporate process,
product and concept innovations into systems development, and further to
disseminate and institutionalise such innovations. This function we call the
learning and innovation function.

In their analysis of CASE tools Henderson and Cooprider (16) observed
that CASE tools were mostly limited in their functionality to the production
function. Here environments supported representation tasks, but largely lacked
functionality in analysis and transformation tasks. The survey of Vessey and
Sravanapudi showed that nearly all CASE tools were void of any support for
co-operative and organisational functions (45). The analysis did not recognise
the role of CASE technology in organisational learning and therefore CASE-
related product and process innovations were not discussed. Based on the
current status of CASE technology we can deem that this kind of support is low
(30, 31). Despite these dismaying results researchers in CASE have not
discussed why CASE functionality is limited. We think that there are at least
two reasons for this. Firstly, CASE development has been product-oriented
rather than use-oriented, and thus has normally considered only the production
or co-ordination functions. Secondly, CASE developers have tended to focus on
one function at a time, and thus CASE tool architectures and platforms have not
been designed so that they support and integrate several functions
simultaneously.

In this paper our goal is to advance the integrated support of the four
desired functionalities in CASE. This will be accomplished by discussing the
design of a CASE tool architecture, environment and tool suite which is better
equipped to meet the demands of all four functionalities. We demonstrate the
viability of our design by reporting its implementation in the MetaEdit+
metaCASE environment (24). The environment offers multi-user, multi-tool,
multi-method and multi-form CASE functionality. Thereby it addresses most of
the requirements related to production and co-ordination functions, i.e.
concurrent creation, maintenance, manipulation, retrieval and analysis of
design objects. It also offers functionalities to embed documentation, standards
and guidelines for method use, plus support for free yet typed hyperlinking of
all model components including traceability and design rationale, thus
enhancing the organisational role of CASE. Finally, as a metaCASE and

141

Computer Aided Method Engineering (CAME) tool, MetaEdit+ provides a
flexible and easy-to-use environment for method specification, management,
integration and re-use, thus fostering method and process learning and
innovation. The metaCASE and CAME side is one of the main advances in
MetaEdit+; however, as it is already covered in (24) we shall not discuss it here.

This paper will highlight and evaluate the architecture and features of the
MetaEdit+ CASE environment by which it more fully addresses the
requirements related to all four functionalities. First we will establish some
definitions and examine related research, and then look at the MetaEdit+
environment, its architecture and tools.

2 Background and related research

A number of definitions are in order:

• A service is an atomic operation offered by the CASE environment which a
user cannot interrupt once started such as paste, delete object or generate
code. On the process side it usually corresponds to a production task that has
been automated. It may also deal with a co-ordination task such as notify, or
an organisational task such as help.

• A tool consists of a set of services providing support for a broader task
domain within a function. Examples of tools are a diagram editor or a project
scheduler.

• A tool set is a small, well-integrated collection of tools that have been
organized together in terms of a specific purpose or goal. Tool sets can be
composed around process roles (such as an analyst), generic functions such
as model editing (as part of the production function), or other criteria such as
the scope of tasks executed by the tools.

• A tool suite is a larger collection of tool sets and individual tools which
together define and provide the current suite of services offered by the CASE
environment.

• Finally, an environment is a repository and tool suite that follow a specific
integration policy. By an integration policy we mean those protocols and
services which make communication and services possible between multiple
users and multiple tools.

Integration policies followed in CASE can be divided into data, control,
presentation, and process integration and their combinations (43). Of high
importance here is the way in which data and control integration are carried
out. The goal of the former is to ensure that all design information in the
environment is managed as a consistent whole regardless of how it is operated
on and transformed. This can take place through a shared repository, or by
defining the interface formats and services through which different tools can
communicate with one another in a software bus. The goal of the latter is to

142

combine an environment’s services according to designers’ preferences. It is
largely driven by the designer’s view of the tasks and processes that the
environment is expected to support and how he sees the need for user control.
Control can take place by defining the responsibilities between services and by
defining invocation and procedure calls between services. Services and their
ease of integration depend to a large extent on the integration policies. For
example, the lack of co-ordination support in earlier CASE can be largely
explained by the lack of consistent data integration mechanisms needed in a
multi-user environment, as well as by the lack of control integration
mechanisms necessary to achieve multi-user functionality.

Historically, the idea of a suite of integrated services in CASE was
outlined in environments such as PSL/PSA (41) and Plexsys (26). PSL/PSA, for
example, embedded production function by including model entry and
manipulation, model analysis through generic and dedicated tools, and a
number of model derivation and output services. Some co-ordination tasks
were accommodated by incorporating project management data into the
repository data. Moreover, all data in PSL/PSA resided in a centralised
database thus achieving a high level of data integration (though rigid and
simple). This also offered some possibilities for task co-ordination. A similar
strategy was later followed in IBM’s A/D Cycle (32). Despite these
achievements neither these nor other CASE environments were based on an
articulated model for integrating and deriving services. In this regard the most
comprehensive study is Chen’s dissertation (8), which sought to address both
production and co-ordination functions by analyzing how to integrate front end
CASE tools with collaborative tasks and group activities (9). Some studies have
sought to integrate production-related CASE services with co-operative services
by using hypertext technologies (13), or knowledge based technologies (22, 21).
Some of these address the need for organisational learning by incorporating
metamodeling functionality into the environment (22).

Overall, existing environments offer powerful services for some
production or co-operative tasks. However, they neglect many important
services including flexible concurrent access, or providing salient support for
some production tasks like model editing services. In particular, no other
current metaCASE tool offers method definition in the same multi-user
environment as CASE with multiple integrated methods and editors. In
addition, although many CASE and even a few practically usable metaCASE
tools are available today, their development and design are largely unreported
in the literature, two welcome exceptions being Software through Pictures (46)
in 1986 and ToolBuilder (1) in 1991.

Alongside actual CASE tool development, another research stream has
focused on integration policies and their strengths and weaknesses. This has
resulted in knowledge of mechanisms through which varying levels of tool and
service integration can be achieved (4, 43, 15, 33). The contribution of this
stream has been, in particular, in analyzing the integration policies of available
services, and the resulting tool properties, their coherency and performance.
This research has also emphasised much more strongly the importance of
process based integration, i.e. how to ensure that tools interact effectively to

143

support a defined process, or desired process features. A notable deficiency in
this research stream is, however, that it has never asked what services along the
four functions of CASE are needed for the defined process, and how these
should be organized into tools and tool suites.

3 The MetaEdit+ environment

MetaEdit+ is a metaCASE environment which offers the following properties:

• multi-user, i.e. several users can operate concurrently on the repository,

• multi-tool, i.e. each user can operate several tools simultaneously where each
tool provides a set of services with a different view to the same object,

• multi-method, i.e. the environment offers several mechanisms for method
integration and consequent consistency checking,

• multi-form, i.e. the environment provides several representation formats for
the same design object, and

• multi-level, i.e. the environment is a true metaCASE environment in that the
user can modify and manage both IS models and its design methods within
the same environment.

The environment seeks to improve the usability of CASE by supporting
multiple simultaneous users, representations forms, several methods and a
varying set of services offered by an open tool suite. It is designed for flexibility
in that it offers a multi-tool, multi-method approach to CASE use and adoption.
It is an open environment in that it fosters environmental evolution by
enabling plugging of new tools through well-defined service protocols. By
doing so the environment is built for growth in response to the demands that
may arise from needs in the production, co-ordination, organisational or
learning functions of CASE.

The design principle in developing MetaEdit+ has been to base its
architecture in conceptual modeling, layered data base architectures, and object
orientation. We apply conceptual modeling by regarding that the
implementation of a method is akin to the development of a conceptual schema
for a software repository. Accordingly, the design of a tool resembles a design
of an external view to a conceptual schema thereby recognising the need for
distinguishing between internal, conceptual and external views of design
objects (2). Hence, a method specification language forms the conceptual
modeling language of the repository schema and is located at the meta-
metamodel level in terms of the IRDS standard (18). The adoption of object
orientation enables flexible organisation and re-use of software components in
the environment and a high level of interoperability between tools. This is
achieved through both data integration (via shared conceptual schemata) and
control integration (via object and method organisation) thus making the
environment open.

144

The use of conceptual modeling and object orientation suggests three
principles for the design of MetaEdit+ system architecture: data independence,
representation independence, and level independence. Data independence is defined in
a similar way as in data base theory, i.e. tools can operate on design information
without “knowledge” of its physical organisation or logical access structure.
Representation independence forms a continuation of the data independence in
that it allows design objects to exist independently of their alternative
representations as text, matrix or graphical representations. This principle
permits flexible addition of new tools, each one only responsible for its own
fundamentally different view on the same underlying design object. Level
independence means that the environment follows a symmetrical approach in its
treatment of data and metadata (24). Accordingly, the specifications of methods
and their behaviours can be managed and manipulated in a similar fashion to
any other object in the environment (therefore the name metaCASE). Moreover,
the specifications can be concurrently operated on through the same or
somewhat specialised tools in the environment.

We think that these principles are important in achieving full support for
the production, co-ordination, organisational and learning functions of CASE,
as will be depicted below.

4 MetaEdit+ components and architecture

The architecture of MetaEdit+ is illustrated in Figure 1. MetaEdit+ runs
simultaneously on many clients connected by a network to a server. Each client
has its own running instance of MetaEdit+, including all its tools and the
MetaEngine. The MetaEngine forms the heart of the environment, from three
important points of view: conceptual data, services and communication. Firstly,
it incorporates the GOPRR conceptual data model (24), which describes the
basic elements of CASE at both model and method level (level independence).
Secondly, it extends this purely data-based model with behaviour in an object-
oriented fashion, handling all operations on the underlying conceptual data
through a well-defined service protocol. Tools in a client request services from
their MetaEngine while accessing and manipulating repository data: thereby we
avoid the need to duplicate the manipulation code. This design choice also
allows flexible addition of new tools, each only responsible for its own
paradigmatically different view (including view-related services) on the same
underlying repository data (representation independence).

Within a client the MetaEngine performs a function similar to that of the
message server in control integration approaches using message passing (5),
e.g. in H-P Softbench (6). The difference is in the sending of messages: in control
integration, tools must explicitly send messages when changing data; in
MetaEdit+, tools’ changes to data handled by the MetaEngine cause automatic
messages to be generated from the MetaEngine to other tools, using Smalltalk’s
dependency mechanism. This clearly reduces the amount of work needed in

145

tool implementation, as tools no longer need to explicitly send messages when
changing data. Even some of the receiving tools’ responses are defined by the
MetaEngine. Whilst this form of integration is currently only within each client,
a similar system, TDE (40), has been able to add this integration between clients
via their own notification server, running in addition to the data integration
provided by the repository. The disadvantage of their approach is the breaking
of the atomicity and consistency provided by an ACID transaction.

 FIGURE 1 MetaEdit+ Architecture

Thirdly, the MetaEngine takes care of all communication both for tools and for
the repository (data independence). Both data access / integration and control
integration with other tools are handled by the MetaEngine, again reducing the
overhead of implementing new tools. Similarly, the MetaEngine handles all
communication with the server, including concurrency management. Clients do
not communicate with each other directly, but rather only through the shared
data in the server, accessed via their MetaEngines. Thus the major integration
mechanism applied between clients is data integration.

In these three sides of its functionality the MetaEngine thus provides the
data independence, representation independence and level independence we

146

posit as requirements for an integrated CASE architecture, by using object-
oriented conceptual modeling over a layered database architecture.

In our database architecture the server is passive, with the workload
centred in the clients. The MetaEdit+ server forms the software repository
holding all the data contained in models, and also in the metamodel(s), in
addition to user and locking information. In particular, the MetaEdit+
repository includes conceptual types, i.e. semantic method specifications,
including rules, code generation and reports; representational types, i.e. symbol
specifications needed to represent design objects; conceptual instances, i.e. the
models based on the conceptual types, and representational instances, i.e. the
representations of those models. The server provides few services, largely
restricted to data access (including access rights and locking), and session and
transaction management.

The architecture of a MetaEdit+ client is similar to that of the ECMA
reference model (14) and PCTE (42):

• Basic user interface services (look and feel) are separated from tools.

• Basic object management services (repository access) are separated from
tools.

• New tools can be inserted easily.

However, it differs in several important respects:

• Tools handle only their representational data themselves: operations on
conceptual data are requested from the MetaEngine.

• Tools do not communicate with each other directly, but only through the
MetaEngine via shared data or simple requests to start another tool.

• Data-related user interface services, e.g. dialogs, are provided by the
MetaEngine rather than the User Interface Service.

Thus the MetaEngine has a more important role than in the ECMA reference
model: it implements many operations considered there as being in the User
Interface Services or tools. We find this to be a more object-oriented approach:
conceptual data behaviour (operations, dialogs etc.) is associated with the types
that store the data. This abstraction out of conceptual operations from the tools
also makes for more lightweight tools: defining a new tool is significantly
easier. Further, coupling of tools to the rest of the environment is simplified by
moving data operations from the User Interface Services to the MetaEngine:
tools use the MetaEngine for all their data and control needs.

This architecture also allows new tools to add functionality to existing
tools by a novel mechanism, which we call embedding. For instance, a menu for
the Hypertext tool (see Section 7) is added by the MetaEngine to all model
editing tools as they follow the standard opening protocol. The tools have no
direct link to the Hypertext tool, and no special code to call or use it, nor does
the Hypertext tool have a direct link to the tools, or special code to interface
with each tool, yet all the functionality of the Hypertext tool is available to the
user within each editor, fully and seamlessly embedded there. The Process

147

Management Services, present in PCTE but currently only under development
in MetaEdit+, are being added in a similar way.

4.1 The MetaEngine and its data architecture

Because all method specifications in MetaEdit+ are interpreted as high level
conceptual models the kernel of the MetaEdit+ functionality is determined by
the underlying conceptual data model called GOPRR (24) which is used as a
universal meta-metamodel. Very little if any method “knowledge” is buried
into the code in tools. The MetaEngine embodies the implementation of the
GOPRR model and its behaviour.

The basic GOPRR elements, called metatypes, are Graph, Object, Property,
Relationship and Role. These elements are used symmetrically on both the type
and instance levels (level independence). An element of a particular method is
called a type, and belongs to a metatype: e.g. Process in a Data Flow Diagram is
a GOPRR type whose metatype is Object. The MetaEngine specifies how
instances of types (e.g. a specific Process with number 2.1) behave using
information from two sources: the fixed definitions of how an instance of a
metatype behaves in general, modulated by the specific information contained
in the Process type. For example, when creating an Object instance the
MetaEngine knows that it must create some Property instances (fixed metatype
information), and the Process type specifies how many Properties and of what
types (specific type information). A tool, in contrast, knows neither of these; it
simply knows the user has asked to create a Process, and passes this request on
to the MetaEngine, which creates the Process and its properties, allows the user
to fill in the properties, and then returns the created Process to the tool.

The use of MetaEdit+ is thus not radically different from other CASE
tools: all the same basic functionality is present. The major architectural
difference is that MetaEdit+’s tools can be regarded as generic, syntax-oriented
editors: the syntax of the method has been defined through a GOPRR
specification, and the tool follows universal mapping rules which determine
how each GOPRR metatype is represented and behaves. The benefit of this
approach is that it makes possible fast and flexible specification of a new
method editor, and provides a uniform user interface across all “specialised”
method based editors. Its drawback is its generality: it cannot offer the fine
details of individual method support in the same way as a diagram editor
dedicated to a single method. Such fine details include honouring specialised
semantics attached to spatial locations, or the exact representation and rules of
complex graphical symbols. Support for details such as these could be added to
MetaEdit+, but at the expense of much greater complexity of the metamodelling
process: building CASE tool support for the method would then involve
programming, reducing the metamodelling facilities to little more than a library
of useful pieces of code for CASE tool implementation.

148

4.2 Tool sets

In the design of the environment we have organized tools into five distinct tool
sets according to their purpose and underlying common functionality. These
functionalities and their organisation into tool sets has been derived from our
analysis of needs to support production, co-ordination, organisational support
and learning tasks. From the viewpoint of conceptual data and its behaviour
each tool set portrays similar demands in terms of manipulation, locking and
retrieval, though different representational paradigms followed in tools may
pose additional demands. These have to be dealt with individually in each tool.
Each tool set contains one or more tools (Table 1). The five tool sets are the
following:

• Environment management tools: These tools help manage features of the
environment, and the other main components are launched from here.

• Model editing tools: These tools primarily serve the production function and
therefore tools within this set can be used to create, modify and delete model
instances or their parts. In addition, these tools can be used to view the
model instances from alternative representational viewpoints, and/or to
derive new information from existing design information. The editing tools
can provide extensive information on the current metamodels and their use,
thus supporting the learning and organisation functions.

• Model Retrieval tools: These tools primarily serve production functions in
that the tools retrieve design objects from the repository for reuse and
review. The tools can operate on metamodels as well as models, and thus
also support the learning and organisation functions.

• Model linking and annotation tools: These tools serve all four functions due
to their versatility. They link design objects for traceability and
memorisation, annotate model instances for learning and standardisation,
find specific “locations” in the design space for manipulation, or maintain
conversations about design instances or method instances (learning).

• Method management tools: These tools serve all four functions at the meta-
level, as the methods resulting from their production functionality embody
the other functionalities when taken into use. Their primary purpose is to
support the method production function, but by doing so they also enable
learning and innovation within and through the environment. Specific tools
in this tool set include tools for method specification, management and
retrieval. The method management toolset is described in (24).

In the following sections we will examine the three tool sets that relate to
models, considering how they support the four CASE functionalities.

149

 TABLE 1 MetaEdit+ Tool Families

Tool Set Tool Tool Functionality
Environment
Management

Startup Launcher
Main Launcher
Options Tool

Initialisation of the environment, login,
launching of other tools, modification of
run time parameters

Model Editing Diagram Editor Manipulation and creation of models
where objects and relationships can be
viewed and manipulated as graphical
diagrams

Matrix Editor Manipulation and creation of models
viewed and edited as matrices, and
algorithms performed on them to aid
design decisions (23)

Table Editor Manipulation and creation of objects in
models and all their properties at once.
This is especially useful for
requirements analysis.

Model Retrieval Repository
Browsers

Allows hierarchical access to models
and metamodels stored in the
repository;

Query Editor Allows formulation and use of
graphical queries on the models stored
in the repository (27)

Report Editor Generates textual descriptions of the
models stored in the repository using a
procedural query and data
manipulation language.

Model Linking
and Annotation

Linking Ability
hypertext tools

Provides functionality to add notes and
links to any design objects in the
repository which can then be seen by
any other editing tool.

Debate Browser Provides functionality to maintain and
trace conversations about design
decisions

Method
Management

Object tool
Property tool
Relationship tool
Role tool
Graph tool

Specification of conceptual types and
their rules, links and integration (24)

Symbol Editor Specification and design of graphical
objects and their behaviours. Linking of
graphical objects to conceptual object
types

150

5 Model editing tools

Model editing tools form MetaEdit+’s key functionality from the users’ point of
view when viewed as production technology. In particular, the tools help create,
modify and delete model instances. All model editing tools are similar insofar
as their main purpose is to help manipulating and creating models. They differ
in terms of their focus and representational paradigm supported. Some tools are
object-centered, whereas others are relationship- or property-centered. Taken as
a whole this tool set provides a great variety of representation, manipulation
and analysis services on the underlying conceptual design objects.

5.1 Diagram Editor

Most current methodologies use graphical techniques to represent models.
Examples galore: structured methodologies like ISAC (28) and SA (48), or
object-oriented methodologies like OMT (38), OOA/OOD (10), Fusion (11), and
Shlaer-Mellor (39). This makes a graphical editor or a diagram editor, as we call
it, sine qua non for the usability of any CASE environment. Consequently, all
recent CASE environments have been built around a dedicated graphical
editor(s) that supports the chosen diagrammatic methods.

MetaEdit+’s Diagram Editor supports all the normal functions found in
other CASE tools’ graphical editors, automatically adapting its menus, symbols
etc. to the information specified in the types of the method being used. For
instance, the Graph menu (see Figure 2) includes functionality to view
information and properties of this graph, open this graph or other graphs in
other editors, and run or create reports and code generation for this graph. All
this functionality is supplied by the MetaEngine, and works and looks the same
in all editors. Similarly the toolbar (bottom left), Types menu and Help menu
functionality is provided by the MetaEngine, as are some actions on the Edit
menu.

User interaction is object oriented in two important ways: it follows the
‘select-operate’ ordering, and the available actions in the popup menu
associated with each element are different for different selected elements, e.g.
only relationships have the ‘straighten line’ menu option.

151

 FIGURE 2 The Diagram Editor showing a Data Flow Diagram

5.2 Matrix Editor

Matrix representations are used in representational and analysis functions in
many methods, such as structured methods (28) and business process re-
engineering (17, 29). Whilst CRUD matrices are the best known, any model can
also be represented in a matrix form. The benefit of this form is that a matrix
representation focuses on relationships and helps users infer global properties
of the whole system or its parts based on the nature of the focused
relationships. Another advantage of the matrix representation is that it allows
fast input of relationships between objects and their properties.

 FIGURE 3 The Matrix Editor showing a Data Flow Diagram

In the example in Figure 3, a user has opened a Matrix Editor on a Data Flow
Diagram of a Sales System (cf. Figure 2). The selected element ‘Customer

152

details’ on the left shows that there is a flow of customer details between the
‘Maintain customer records’ Process and the ‘Customer’ Store.

The user can choose to view any graph instantly as a matrix, and thereby
easily benefit from the matrix representation in those tasks where the matrix is
a better-suited representation paradigm. Such tasks include organising large
collections of objects into groups, especially when there are many relationships
involved which would make rearranging a diagram representation difficult.
The user can arrange groups of axis items, divide up the functionality, data etc.
of the modeled system, using a combination of sorting, diagonalisation and
manual approaches not possible in diagram form. As the many extra menus
(between the Types and Help menus) show, there is much added matrix-
specific functionality that is not available in other editors: most of this relates to
different ways of building and showing the matrix. When creating a new
matrix, the editor automatically makes initial formatting choices on the basis of
the metamodel, saving the user work. The matrix editing functionality is
described more fully in (23).

5.3 Table Editor

A Table (form) representation complements the matrix and diagram
representations and offers a third way to represent and analyze design data. It
has been included into the model editing tool set because of its two useful
features. First, it provides a tabular or form based view on conceptual design
objects: this is often needed in data gathering and review with users who often
find filling in a form for each item easy compared to establishing relationships
between items. Second, it lends support for methods that use organized lists or
forms in capturing or organising design data. These methods include for
example Critical Success Factors (36), root definitions (7), problem and goal lists
(28), use cases (19), or even requirements specification standards such as DOD
standards.

In the Table Editor design objects are represented as rows and properties
of these objects form columns. Thereby the editor provides a natural way to
view simultaneously design information concerning multiple objects in a
compact form. Figure 4 shows our example of a Data Flow Diagram as seen
through the Table Editor (cf. Figure 2 and Figure 3). As can be seen, the Table
Editor does not use the MetaEngine’s toolbar and Type menu services: there is
no need for them as each table only displays objects of one type, here Processes.

 FIGURE 4 The Table Editor showing Processes from a Data Flow Diagram

153

6 Model retrieval tools

Model retrieval tools become essential when the size of the repository (both at
the model instance level and at the method level) grows. They are needed to
navigate through and retrieve model instances that meet specific retrieval
conditions. Moreover, these components can often be modified or transformed.
Consequently, method retrieval tools are necessary if wider re-use of method
components or design objects is sought for. All tools in this family agree with
their main purpose, i.e. to retrieve model instances and components from the
repository but differ in terms of access functionality, ease-of-use and preferred
retrieval strategy. Some of the tools are navigational, whereas others are set- or
predicate-oriented. They also differ in how the retrieval functionality is
represented to the user. Taken as a whole the family provides a rich variety of
retrieval forms and functionality for the underlying conceptual data.

6.1 Repository Browsers

MetaEdit+ browsers can be used for viewing, navigating through, and editing
individual objects in the repository. All browsers operate on the conceptual
level, i.e. when an object has been selected it can be viewed through different
tools as a diagram or a matrix. Overall, browsers provide a quick list-based
textual view of the defined models and their components and are extremely
useful in model re-use by helping to find objects that meet some criteria: they
include basic wild card searches, and restriction by type, graph, or project. In
this way they foster the organisational and learning functions, although their
main function should still be seen as production.

154

To accommodate different browsing needs, MetaEdit+ includes two browsers: a
Type Browser and a Graph Browser, shown in Figure 5. The list on the left hand
side of both browsers shows all the currently open projects, and the middle list
shows a hierarchical list of all the types or graphs in the selected project(s). In
the right hand list, the Type Browser shows all instances of the selected type in
the selected project, whereas the Graph Browser shows all the objects, roles or
relationships in the selected graph. Both Browsers allow the users to edit the
selected instance or type by opening the appropriate model editing tool or
property window. Use and definition information about the selected item in the
form of separate Info Window, which gives detailed information about the
status of the item, and where it is used.

6.2 Graphical Query Tool

The query tool allows the user to query the repository using a high level
graphical query language, providing help in the production function and also
the learning function: new users can easily find information they need based on
queries, rather than needing to know where the information is stored. Two
aspects have played a central role in the development of the query tool: user
friendliness and expressive power. As the visual query paradigm (3) has been
shown to be capable of addressing both aspects (37, 47), it has been adapted as
the basis of the tool’s user interface. The expressive power of the query tool’s
powerful pattern matching facilities fosters informed re-use, while the clear
visual paradigm provides for ad hoc searching and information needs.

 FIGURE 5 Type & Graph Browsers

155

To improve usability, query formulation is performed by syntax-directed
editing (27). In addition, the tool provides instant feedback during the course of
the query formulation in that it can execute a query at any intermediate step of
the formulation process. These strategies minimise the possibility that the user
will construct an erroneous query, and relieve the unnecessary cognitive load of
having to remember the syntax of the query language.

Figure 6 displays a sample query in the query tool over the example DFD.
The query window (A) shows the conditions 1a and 2, and the condition
window (B) shows the query condition 1b for the process selected on the left of
the query window (A).

Find those stores in a Data Flow Diagram which meet the following two
conditions:

1a. The store receives a Data Flow from a process that:
1b. either has a name with capital starting letter P, or its Ordinal-Number is

greater than 2; and
2. The store does not direct any Data Flow to process XXX.

 (A) Query window (B) Query condition window

 FIGURE 6 The graphical query representation

6.3 Report Editor

Important abilities of any CASE tool are to check models, obtain textual reports
of the contents of models, and generate program code from models. Reflecting
its importance, this functionality addresses issues in all four of our functions:
production, co-ordination and organisation (by defining and running checking
reports we plan for and enforce rules), and learning and innovation (by
automating the generation of code and documentation). In MetaEdit+ these

156

functionalities are supplied via a structured, GOPRR-oriented reporting
language, which supports flow control, text output and basic text formatting.
Reports are defined in the Report Editor, which supports straight text entry of
the report language and also template-based addition of the flow control
statements and GOPRR elements: all the Object, Relationship and Role types, as
well as their various properties, can be selected directly from the template lists,
avoiding typing errors and relieving the user of the burden of remembering all
the method constructs. The syntax of the reporting language is presented in
(44).

 FIGURE 7 Report Editor

For example, if we were interested in listing all the Processes in a Data Flow
Diagram with their Process IDs and Names we could write the code shown in
Figure 7.

7 Model linking and annotation tools

In addition to basic tools that manipulate and retrieve models based on the well
defined method specification (grammar), one needs tools that enable the
creation, modification and deletion of navigational hyper-links between models
or parts of them (13). Such a family of tools we call model linking and annotation
tools. Currently most CASE tools enable the creation and manipulation of
models conforming to the method specification, but hardly ever lend support
for representing ad hoc or informative model connections. This results in weak
model integration and poor transparency of use, and the consequent lack of
traceability and design history recording has been shown to be one cause for
design and maintenance problems (20).

157

Allowing free hypertext linking of all model components supports the
production. Traceability links (e.g. between a requirement and the design object
that implements it) can be used as a co-ordination function to provide an access
structure complementary to the normal hierarchy of graphs. In addition the
ability to create subtypes and keywords for links and to form glossaries
supports the learning and innovation function.

7.1 Linking Ability: Hypertext editor

In MetaEdit+ we use “embedded” CASE hypertext functionality to offer a
generic linking ability across all model editing tools (see 35). Several link types
are used: association between two GOPRR elements, descriptive annotation of
an element, traceability (e.g. from a requirements object to the corresponding
design object), and debate links. A debate link connects an element to a debate
in the Debate Browser, which captures the design rationale for that element in
the form of a debate graph of questions, answers and arguments, similar to e.g.
gIBIS (12).

As an example, see Figure 8. The ‘Customer’ Store in the Data Flow
Diagram on the left has two links, as shown by the ‘2’ by its symbol. One link is
to an Annotation, ‘Customer database’, which explains the linking of the Store
with an existing database: note that the annotation itself contains two further
hypertext links, shown underlined. The second link from the DFD ‘Customer’
Store is an Association to the ‘Customer’ Class in an OMT Class Diagram: the
Class is the implementation of the Store. The activation of any of these links
opens up the corresponding node, e.g. we can activate the ‘Customer’ Store
association link, which will open the Class Diagram and select and scroll to the
‘Customer’ Class.

158

 FIGURE 8 Hyper-links and annotations in diagrams

To help manage the added complexity of hyper-links, a variety of navigational
aids have been implemented. These include bookmarking capabilities, a history
list, filters, and text string searches. Queries may be made to find links based on
properties including label, creator, creation timestamp, subtype, and keywords.

7.2 Debate Browser

Debate Browser is an annotation and review tool that supports the capture and
exploitation of arguments behind design decisions. These are expressed using
three kinds of nodes, questions, answers, and arguments, each focusing on
articulating one key aspect of the design problem. The Debate Browser thus co-
ordinates design resolution amongst the users, and fosters learning and
innovation by allowing discussion and recording of design decisions and their
reasoning in a structured reusable format: it is described more fully in (34).

159

 FIGURE 9 Debate Browser

The Debate Browser has two tools for investigating the design rationale, a
textual browser and a graphical form. As an example, Figure 9 shows a debate
about the credit checking for the Sales System, with both Browser and Graph
representations of the same debate, with a dialog opened on the argument
selected in the Browser.

8 Discussion and conclusions

Overall, we have sought to develop MetaEdit+ as a multi-tool platform for
trying out different tools and tool construction principles, and the use of object
oriented architecture in designing and implementing a CASE tool. This is well
reflected in its current implementation. MetaEdit+ has been implemented in a
highly object-oriented fashion using the VisualWorks Smalltalk environment
with the ArtBase object repository system and NEDT graphical extensions. This
approach has allowed us to concentrate on new functionality and the synthesis
of existing separate advances, rather than basic graphics behaviour or user
interface programming.

Our goal in developing the MetaEdit+ environment has been to develop
an environment which:

• has an open architecture which separates the conceptual specification of the
repository and the view (or representation) adopted in different tools and

160

thus conveys a high-level object-oriented API for the tool-repository
interactions and pluggable tools;

• offers mechanisms for concurrent access of repository data through different
tools and users;

• features a comprehensive and well-organized tool set for diverse and
complex information handling tasks encountered in systems development
with some new functionality such as matrices, hypertext tools and the query
tool;

• includes flexible mechanisms for tool integration and both vertical and
horizontal method integration support;

• is the first CASE tool to offer ad hoc hypertext linking in models, with CASE-
specific link types including design rationale and traceability;

• provides symmetrical treatment of IS models and metamodels, and thus
enables re-use, metamodel management and utilisation within the same
environment;

• provides support for alternative representational paradigms including
matrices, tables and hypertext.

As we have shown, MetaEdit+ offers the necessary functionality for supporting
the production function (through multiple editors and reporting tools), co-
ordination function (through multi-user support and powerful integrity
enforcement mechanisms, and hypertext), organisational function (through
powerful help functionality, query systems and hypertext), and learning and
innovation function (through metamodeling capabilities, symmetrical access to
metamodels and hypertext functionality). We believe that with these features
MetaEdit+ addresses many flaws found in current CASE tools (16).

MetaEdit+ also offers some innovative approaches to method
management and use. First, through its novel method integration mechanisms
it provides ways to organise methods and method families into methodologies,
and also to organise methodologies with alternative levels of connectedness
and inter-method integrity constraints. Second, through its open architecture
and tool interoperability MetaEdit+ can support the highly diverse
representational paradigms and information processing needs which are
demanded from software engineering environments. Third, through the
availability of a varied yet uniform (in terms of user accessibility and user
interface) tool set the MetaEdit+ environment is able to cater for diverse needs
of different system development stakeholders. In this sense MetaEdit+ achieves
the design goals of better usability, improved flexibility and a open
architecture.

Despite these advances MetaEdit+ is not currently a fully complete
environment, suitable for all types of development tasks and functions. First,
the current version of MetaEdit+ does not provide a uniform environment for
process specification, enactment and enforcement which is critical for improved
co-ordination support. This functionality is currently under development (25).
Second, MetaEdit+ supports only a single multi-user repository, and thus does

161

not address the need for multiple distributed repositories which is typical for
software development in the large and by many. Third, it does not yet provide
flexible mechanisms for integration with external co-ordination or production
function tools (such as electronic publishing or CSCW tools).

To conclude, MetaEdit+ forms a versatile platform for implementing
flexible design information systems that will form the necessary organisational
memory and design resource for knowledge intensive systems and software
engineering in the next millennium. If any significant improvement has been
made in realising this vision we have achieved our goals.

Acknowledgements

We are grateful to many colleagues, including Kari Smolander, Janne Kaipala,
Pentti Kerola, Minna Koskinen, Janne Luoma, Juha Pirhonen, Risto Pohjonen,
Marko Somppi, and Veli-Pekka Tahvanainen who have been involved in
designing and implementing some parts of the system.

References

1. Alderson, Albert Meta-CASE Technology, Software Development
Environments and CASE Technology, Proceedings of European
Symposium, Königswinter, June 17-19, A. Endres and H. Weber (ed.),
509, Springer-Verlag, Berlin (1991), 81-91.

2. ANSI, Study Group on Data Base Management Systems: Interim
Report 75-02-08, ACM SIGMOD Newsletter 7, 2 (1975).

3. Batini, C., Catarci, T., Costabile, M.F. and Levialdi, S. Visual Query
Systems, Report 04.91, Università Degli Studi di Roma ‘La Sapienza’
(1991).

4. Brown, A., McDermid, J.A. Learning from IPSE’s mistakes, IEEE
Software (March 1992), 23–28.

5. Brown, Alan W. Control Integration through Message Passing in a
Software Development Environment, CMU/SEI-92-TR-35, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA
(1992).

6. Cagan, Martin R. The HP SoftBench environment: an architecture for a
new generation of software tools, Hewlett-Packard Journal 41, 3
(1990), 36–47.

7. Checkland, P.B. Systems Thinking, Systems Practice, J. Wiley, New York
(1981).

162

8. Chen, M. The Integration of Organization and Information Systems
Modeling: A Metasystem Approach to the Generation of Group
Decision Support Systems and Computer-aided Software Engineering,
PhD Thesis, University of Arizona, Tuscon, USA (1988).

9. Chen, M., Nunamaker, J.F. Jr. and Mason, G. The Architecture And
Design Of A Collaborative Environment For Systems Definition,
Database (Winter/Spring 1991), 22–28.

10. Coad, P., Yourdon, E. Object-Oriented Analysis, Englewood Cliffs, New
Jersey (1990).

11. Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P. Object-Oriented Development: The Fusion Method,
Prentice Hall, Englewood Cliffs (1994).

12. Conklin, J., Begeman, M.L. gIBIS: A Hypertext Tool for Exploratory
Policy Discussion, ACM Transactions on Office Information Systems 6,
4 (1988), 303–331.

13. Cybulski, J.L., Reed, K. A Hypertext-Based Software Engineering
Environment, IEEE Software (March 1992), 62–68.

14. ECMA, Reference Model for Frameworks of Software Engineering
Environments, Technical Report ECMA TR/55, 2nd Edition (1991).

15. Fernström, C., Närfelt, K.-H.n and Ohlsson, L. Software Factory
Principles, Architectures, Experiments, IEEE Software (March 1992),
36–44.

16. Henderson, J., Cooprider, J. Dimensions of IS Planning and Design
Aids: a functional model of CASE technology, Information Systems
Research 1, 3 (1990), 227–254.

17. IBM Corporation, Business Systems Planning — Information Systems
Planning Guide, Publication #GE20-0527-4, IBM (1975).

18. ISO, Information processing systems: Information Resource
Dictionary System (IRDS) Framework, Draft International Standard
ISO/IEC DIS 10027 (1989).

19. Jacobson, I., Christeson, M., Jonsson, P. and Övergaard, G., Object-
Oriented Software Engineering — A Use Case Driven Approach, Addison-
Wesley, Reading, USA (1992).

20. Jarczyk, A.P.J., Löffler, P. and Shipman, F.M. Design Rationale for
Software Engineering: A Survey, Proceedings of the 25th HICSS,
Hawaii, 2, IEEE Computer Society Press, Los Alamitos, CA (1992),
577–586.

21. Jarke, M., Jeusfeld, M. and Rose, T. A Software Process Data Model
For Knowledge Engineering In Information Systems, Information
Systems 15, 1 (1990), 85–116.

22. Jarke, M. Strategies for Integrating CASE Environments, IEEE
Software (March 1992), 54–61.

23. Kelly, S. A Matrix Editor for a MetaCASE Environment, Information
and Software Technology 36, 6 (1994), 361–371.

163

24. Kelly, S., Lyytinen, K. and Rossi, M. MetaEdit+: A fully configurable
multi-user and multi-tool CASE and CAME environment, Advanced
Information Systems Engineering, proceedings of the 8th International
Conference CAISE’96, P. Constapoulos, J. Mylopoulos and Y.
Vassiliou (Ed.), Springer-Verlag (1996), 1–21.

25. Koskinen, M., Marttiin, P. Process Support in MetaCASE:
Implementing the Conceptual Basis for Enactable Process Models in
MetaEdit+, Proceedings of Software Engineering Environments,
SEE’97, Gottbus, Germany (1997), 110–122.

26. Kottemann, J.E., Konsynski, B.R. Dynamic Metasystems for
Information Systems Development, Proceedings of the Fifth
International Conference on Information Systems (1984), 187–204.

27. Liu, H. A Visual Interface for Querying a CASE Repository, in Proc. of
the Eleventh IEEE Symposium on Visual Languages (VL’95),
Darmstadt Germany (1995).

28. Lundeberg, M., Goldkuhl, G. and Nilsson, A. Information Systems
Development: a systematic approach, Prentice-Hall (1981).

29. Martin, J. Strategic Information Planning Methodologies, Prentice-Hall,
Englewood Cliffs, NJ (1989).

30. Marttiin, P., Rossi, M., Tahvanainen, V.-P. and Lyytinen, K. A
Comparative review of CASE shells: A preliminary framework and
research outcomes, Information & Management 25 (1993), 11-31.

31. Marttiin, P., Harmsen, F. and Rossi, M. Evaluation of two CAME
environments using a functional framework: findings on Maestro
II/Decamerone and MetaEdit+, Method Engineering, Principles of
method construction and support, Proceedings of the Method
Engineering ’96, Proceedings of IFIP 8.1/8.2 Working Conference on
Method Engineering, S. Brinkkemper, K. Lyytinen and R. Welke (Ed.),
Chapman-Hall, London (1996), 63–86.

32. Mercurio, V.F., Meyers, B.F., Nisbet, A.M. and Radin, G. AD/Cycle
strategy and architecture, IBM Systems Journal 29, 2 (1990), 170–188.

33. Mi, P., Scacchi, W. Process Integration in CASE Environments, IEEE
Software (March 1992), 45–53.

34. Oinas-Kukkonen, H. Debate Browser — An Argumentation Tool for
the MetaEdit+ Environment, Proceedings of 7th Workshop on the
Next Generation of CASE Tools, NGCT’96, Crete, Greece (1996), 77–
86.

35. Oinas-Kukkonen, H. Towards Greater Flexibility in Software Design
Systems through Hypermedia Functionality, Information & Software
Technology, 39, 6 (1997), 391–397.

36. Rockart, J. Chief Executives Define Their Own Data Needs, Harward
Business Review 57, 2 (1979).

37. Rosengren, P. Using Visual ER Query Systems in Real World
Applications, Proc. of the 6th international Conference, CAiSE’94, G.
Wijers, S. Brinkkemper and T. Wasserman (Ed.), Wiley, Utrecht, The
Netherlands (1994), 394–405.

164

38. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W.
Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs,
NJ, USA (1991).

39. Shlaer, S., Mellor, S.J. Object Lifecycles: Modelling the World in States,
Prentice Hall, Yourdon Press Computing Series, Englewood Cliffs, NJ,
USA (1992).

40. Taivalsaari, A. and Vaaraniemi, S. TDE: Supporting Geographically
Distributed Software Design with Shared, Collaborative Workspaces,
Proceedings of CAiSE '97, Barcelona, Catalonia, Spain, June 16–20, A.
Olivé and J. A. Pastor (ed.), 1250, Springer, Berlin (1997), 389–408.

41. Teichroew, D., Hershey, E.A. III. PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems, IEEE Transactions on Software Engineering
(1977).

42. Thomas, I. PCTE Interfaces: Supporting Tools in Software-Engineering
Environments, IEEE SOFTWARE 6, 6 (1989), 15–23.

43. Thomas, I., Nejmeh, B.A. Definitions of Tool Integration for
Environments, IEEE Software (March 1992), 29–35.

44. Tolvanen, J.-P., Kelly, S. MetaEdit+ User’s Guide, Technical Report,
TKTL, University of Jyväskylä, Jyväskylä (1995).

45. Vessey, I., Sravanapudi, A.P. CASE tools as collaborative support
technologies, CACM 38, 1 (1995), 83–95.

46. Wasserman, A. I. and Pircher, P. A. A Graphical, Extensible Integrated
Environment for Software Development, Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments (December 1986), 131–142.

47. Weiland, W.J., Shneiderman, B.A. A Graphical Query Interface Based
on Aggregation/Generalization Hierarchies, Information Systems 18,
4 (1993), 215–232.

48. Yourdon, E. Modern Structured Analysis, Prentice-Hall, Englewood
Cliffs, NJ, USA (1989).

