

MetaEdit+ for
Collaborative Language Engineering and Language Use

(Tool Demo)

Juha-Pekka Tolvanen

MetaCase
Ylistönmäentie 31, FI-40500 Jyväskylä, Finland

jpt@metacase.com

Abstract

Almost all software development activities require collabo-
ration and language engineering is no exception. First, there
is a need for collaboration among language engineers as it
is not realistic to expect one man to master all. Second,
there is a natural need for collaboration among language
users. Finally, there is a need for collaboration among lan-
guage engineers and language users: Not only when lan-
guages are originally designed but more importantly when
they are maintained along with the work already created
with them. Unfortunately too often tools ignore collabora-
tion by unnecessarily splitting the work into separate for-
mats, tools and roles. We describe and demonstrate collab-
orative tool capabilities implemented into MetaEdit+ tool
and describe experiences on their use in practice.

Categories and Subject Descriptors D.2.2 [Software
Engineering] Design Tools and Techniques - user interfac-
es, state diagrams D.2.6 [Software Engineering] Pro-
gramming Environments - programmer workbench, graph-
ical environments D.3.2 [Programming Languages] Lan-
guage Classifications - Specialized application languages,
very high-level languages

General Terms Design, Languages.

Keywords Language Engineering, Language Workbench,
Metamodeling, MetaEdit+, Collaboration

1. Introduction

Almost all software development activities require collabo-
ration and language engineering is no exception. In modern
language workbenches collaboration comes in three ways.
First, language engineers want to create, edit and check the
same shared language specification, with minimal time
taken away from the actual work by things like handling
conflicts, running diff and merge activities, and fighting
with tools. Second, developers using the languages for
system and software development want to collaborate in a

similar way. Last and most importantly to language engi-
neering, collaboration is also needed between language
engineers and language users. All three ways of collabora-
tion are crucial for any larger project as it is not realistic to
expect a single person to handle everything. We claim that
tools in particular must enable collaboration between both
roles: Allow language engineers to get quickly feedback on
language design – also when the language is already in use.
This helps to evaluate the impact of language changes.
Similarly language users should be able to access the
metamodel (depending on rights given) and at least propose
changes. We describe and demonstrate proven approaches
for collaborative working with models and metamodels
(language specifications). These collaborative tool features
are implemented in MetaEdit+ [3].

We start from collaborative language creation
(metamodeling) showing how it can be used in typical
language engineering situations as well as describe the
benefits it can provide. The same is done for collaborative
language use, aka modeling. Finally we move to collabora-
tion among language users and language engineers. We
conclude by sharing experiences how this kind of collabo-
ration enables scalability in terms of multiple engineers,
multiple languages and large models as applied in industrial
cases.

2. Collaborative Language Engineering

A language definition contains several parts: Abstract syn-
tax, concrete syntax and semantics like constraints and
transformations. Unfortunately these parts are often defined
in separate activities, by different engineers and the results
are specified into own documents with dedicated formal-
isms. Lack of collaboration and disconnected specifications
then easily lead to inconsistencies and incompleteness. An
example of this is UML standard as it contains more than
300 errors in abstract syntax and related constraints (ex-
pressed in OCL) [1, 6]. A better way would be to keep the
language specification integrated and accessible for all
language engineers involved. Several language engineers
could then work with the same integrated language specifi-
cation and changes could be traced among its parts.

Figure 1 illustrates this idea using ETSI’s TDL (Test
Description Language) as an example. Top left (A) shows a
fragment of the abstract syntax with an element called
‘ComponentInstance’. Top right B) shows a constraint
related to the uniqueness of name. Bottom left (C) illus-

trates how the concrete syntax for component instance is
defined from various symbol elements. Finally, bottom
right (D) shows a related TDL generator which highlights
the component instances accessed from TDL model when
the generator is executed. All these four parts of the lan-
guage definition are integrated in the tool so any changes
e.g. in abstract syntax automatically reflects or can be
traced to the constraint (B), notation (C) and generator (D).

As an extreme case of collaboration, each part of the
language could be defined at the same time by separate
language engineers. This kind of collaborative capability
supports the typical practice that some language engineers
define abstract syntax whereas others can define notation or
generators. Also, when defining several languages that are
integrated, it is a necessity that integration links between
the multiple languages can be defined. This type of collabo-
rative tooling for language engineering provides several
benefits:

 Languages and generators can be checked early while
been defined. As in any team work, several persons
can see more than one, can discuss about language def-
inition and test it in collaboration. This leads to better
quality languages.

 Development of languages and generators is faster:
Not only because different generators can be devel-
oped by different engineers, but because things like no-
tation and some of the checking rules do not need to be
completely ready before making generators.

 Speeds up the move to modeling since while genera-
tors are being still developed modeling can already
start. This is particularly relevant for shorter term pro-
jects in which languages are needed quickly (in days).

MetaEdit+ supports collaboration among several lan-
guage engineers and gives different options on how collab-
oration can be done: e.g. if others can use the language at
the same time while it is been defined, if other language
engineers can define related languages, or if several engi-
neers can edit the same language definition in the same
repository. When working in the same collaborative envi-
ronment MetaEdit+ gives also possibility to give access
rights to language engineers.

3. Collaborative Language Use

The needs for collaborative modeling are basically similar
than for collaborative metamodeling, but now the scalabil-
ity aspects come to play as there are more persons in-
volved, more shared elements and more languages used to
specify the models. Basically, collaborative modeling al-
lows engineers to edit the same models at the same time.
To make this happen and keep models formal at the same
time (rather than plain drawings), collaborative tools apply
locking scheme at some level of the model. To provide
usable collaboration the granularity for locking must be
small. This way several persons can edit even the same
diagram (matrix, tree etc.) at the same time. The pessimistic
concurrency control is widely used in repositories and

Figure 1 Collaborative specification of TDL: A) abstract syntax of ‘ComponentInstance’, B) constraints and rules C) con-
crete syntax of ‘ComponentInstance’, and D) TDL generator accessing component instances.

databases avoiding handling conflicts and performing
merge for collaboratively edited models.

Figure 2 provides an example of collaborative editing in
MetaEdit+ and adds one aspect of scalability to the scheme:
Collaboration is based on several yet integrated languages
(see [4] for details). First, in top left A) two persons are
editing the same diagram and different hardware compo-
nents there. At the same time in B) person3 defines the
logical component of the system and then in C) a person4
defines the allocation between hardware and logical archi-
tecture using the very same components been edited in A)
and B) to generate software allocations. Finally, in D) safe-
ty engineer as person5 defines error models for the logical
component been defined in B). This kind of collaborative
modeling provides several benefits:

 Team can work in the same design space in parallel (as
the case in Fig 2). If feedback or opinions are needed
from colleagues all can see the same model (or model
element) immediately and update the model.

 No time and effort is needed to handle conflicts, like
run diff and merge after having made changes.

 Development is faster as all model information is
available as needed.

 Work from multiple views, such as hardware, timing,
analysis function etc., that are often accessed partly on
from different languages can be integrated at the whole
model level.

 Trace is available among views and model elements,
like see in C) where BrakeFL is been defined.

 Models can be checked and verified early – not based
on one diagram only but on larger model which may
be based on different languages.

When collaborative editing is not wanted, like developer
takes some models home, those parts can be exported and
used in own copy and later integrated back – with a pay-
back of requiring doing diff and merging that in collabora-
tive modeling environment was handled automatically.
MetaEdit+ provides also change and difference analysis
and integration with versioning systems.

4. Collaboration Among Language
Engineers and Language Users

Finally and most importantly for language engineering,
collaboration is not limited among language developers
only as language users can apply the developed language at
the same time. In MetaEdit+ the collaborative tools allow
language engineers and language users share the same
repository and make changes there in parallel. There are no
compilation, packaging, installation etc. activities needed
for a language delivery. Language users do not need either
do any extra actions to get the new language version. Fig-
ure 3 illustrates these features: On the left is a portion of
language definition and on the right is the language in use.
If the abstract syntax or concrete syntax of the ‘Sensor’ is
changed (language element on the left) its influence to the
models can be immediately tested by using the language or
by inspecting the existing models. Saving the language
specification makes it then available for all language users
(as on the right). The same for constraints, rules and trans-
formations related to the language. Tight collaboration

Figure 2 Collaborative modeling with automotive DSLs: A) functional architecture, B) hardware architecture, C) alloca-
tion for AUTOSAR generation, D) behavior.

between language engineers and language users provides
several benefits:

 Enable early feedback and validation of language defi-
nition. Users may immediately test the language and
not only verify that the definition is correct, but also
validate that the language allows specifying the kinds
of things for which it is intended.

 Minimize the risk of creating the wrong language con-
structs and enable the language to be defined in small
increments. This is particularly important if the domain
is new, evolving, or the language engineers do not
have prior experience on language engineering.

 Language adoption and acceptance improves since
language users are involved early in the language crea-
tion.

Finally and most remarkable for language engineering is
that in MetaEdit+ the models already created update auto-
matically to the new language version and can be immedi-
ately edited in various editors. Using the sensor from Fig-
ure 3 as an example: If the name of the ‘Sensor’, or any of
it’s property types are modified (added, renamed or re-
moved), the modification is updated automatically to mod-
els done – without any further action expected from the
language users. This is highly valuable for industrial use
with a lot of models and language users. It is also particu-
larly relevant for DSLs because they evolve more frequent-
ly than general-purpose languages and because the most of
the work, often 90% on used DSLs, deal with the mainte-
nance. Therefore it is important that language engineering
tools manage the 90% to avoid horror stories like [5] stat-
ing that developers needed to wait 5 months to get their
models updated when the DSL implemented with Eclipse
EMF&GMF changed.

5. Experiences and Concluding Remarks

Collaborative features must also address scalability needs
that are crucial in industrial-scale. Not only developers can
work together in the same model, but they can use several
integrated modeling languages. Such integrated languages
have been successfully used with MetaEdit+ in industries
like automotive where is a need to specify logical, hard-
ware, safety, software etc. aspects in an integrated manner
as in Fig 2. A move from editing a single file to a reposito-
ry approach enables scaling to bigger models too, like mil-
lions of model elements [2]. As witnessed in many indus-
tries (finance, telecom, IT) and application areas, reposito-
ries can handle large number of data and transactions. Simi-
larly, lazy loading provides fast access to models and when
running transformations the model data is easily available
as there is no need to read multiple files, parse them and
create internal memory structures to execute transfor-
mations.

We have experiences on applying collaborative features
for language engineering in several projects: e.g. in auto-
motive a large language (with over 20 integrated lan-
guages) was defined collaboratively by 3 language engi-
neers. Also we have applied collaborative tools during
language creation in scenarios where 2 engineers modify
the languages based on the feedback given by 20 develop-
ers using the languages at the same time. This has been
working well and leads almost automatically to better qual-
ity languages that meet the users’ needs. Move to collabo-
ration provides benefits beyond modeling.

While the space does not permit describing further de-
tails an evaluation version of MetaEdit+ along with tutori-
als, user guides and sample languages is available to
download from www.metacase.com.

Figure 3. Collaboration among language engineer (left) and language user (right)

References

[1] Bauerdick, H., Gogolla, M., Gutsche, F., Detecting
OCL Traps in the UML 2.0 Superstructure: Experience
Report. Proceedings of Unified Modeling Language -
Modeling Languages and Applications (UML 2004),
LNCS 3273, Springer (2004)

[2] Kelly. S., Mature Model Management: More than just
XML under Version Control, "Ausgereiftes Modell-
management: Mehr als nur XML unter Versionskon-
trolle", OBJEKTspektrum, October 2010,
www.metacase.com/papers/Mature_Model_Manageme
nt.html

[3] MetaCase, MetaEdit+ Users Guide, 2016,
www.metacase.com/support/

[4] MetaCase, EAST-ADL Tutorial, 2016,
www.metacase.com/papers/MetaEditPlus_Tutorial_for
_EAST-ADL.pdf

[5] Warmer, J., Bast, W., Developing an Insurance Product
Modeling Workbench, Code Generation Conference,
Cambridge, 2011.

[6] Wilke, C., Demuth, B., UML is still inconsistent! How
to improve OCL Constraints in the UML 2.3 Super-
structure, Proceedings of OCL and Textual Modelling
workshop, 2011.

