

S. Kelly (� stevek@metacase.com) • J.-P. Tolvanen (jpt@metacase.com)
MetaCase, Jyväskylä, Finland

K. Lyytinen (kjl13@case.edu)
Case Western Reserve University, Cleveland, USA

M. Rossi (matti.rossi@aalto.fi)
Aalto University, Espoo, Finland

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,

DOI 10.1007/978-3-642-36926-1 10, © Springer-Verlag Berlin Heidelberg 2013

MetaEdit+ at the Age of 20

Steven Kelly, MetaCase; Kalle Lyytinen, Case Western Reserve University;

Matti Rossi, Aalto University; Juha-Pekka Tolvanen, MetaCase

Abstract We review the initial vision underlying MetaEdit+, discuss its evolu-

tion over the last 20 years, and compare it to the state of the art today. We also

note the rise of domain-specific modeling and the value that MetaEdit+ and simi-

lar tools have offered in advancing this field. We conclude with a discussion of

theoretical and conceptual advances in this field that have taken place since the

implementation of the tool, and a review of the future of method engineering.

1 Introduction

In the 1996 CAiSE conference we published a paper called “MetaEdit+: A Fully

Configurable Multi-User and Multi-Tool CASE and CAME Environment” (Kelly

et al. 1996). The paper described a state-of-the-art modeling and metamodeling

environment that the ongoing project at the University of Jyväskylä had imple-

mented. The main goals of the article were to explain the problems found with ex-

isting CASE and method engineering tools, state our vision for the MetaEdit+ en-

vironment, and describe the architecture and key principles in its design and

implementation.

The MetaEdit+ tool was originally developed in a series of research projects

from 1992 until 2001, building on the research behind the earlier, single user and

single modeling language MetaEdit tool (Smolander et al. 1991). A spin-off com-

pany, MetaCase, was founded in 1991 and from 1995 research and development

associated with the tool progressively shifted there and continues today1. The

CAiSE article reflects our understanding of the necessary system functionality and

its architecture in 1996, at which point most of the initial requirements elicited had

been implemented to at least a working beta level.

1 http://www.metacase.com

2

By reflecting on the implementation and use of MetaEdit+ over the years we

have gained a broad and deep appreciation of the challenges of method engineer-

ing and its changing nature as the software industry has evolved. In this paper we

look at how MetaEdit+ has changed since 1996, and how it has impacted method

engineering research and practice. We conclude with a summary of lessons

learned and briefly discuss the future of method engineering and method engineer-

ing tools.

2 Past and current research issues

In the mid-nineties CASE tools and heavyweight methods were seen as a panacea

for most information systems development issues. We observed the need for more

versatile tool support and integration and the ability to adapt tools and methods to

specific situations. This approach was known as ‘situational’ method engineering,

whereby standardized methods were adjusted for varying development tasks and

situations (Kumar and Welke 1992). The 1996 article was one of the first to ar-

ticulate the challenges of situational method engineering and its tool support. That

vision was explained and developed further in a series of theses (Kelly 1997;

Koskinen 2000; Marttiin 1998; Rossi 1998; Tolvanen 1998; Zhang 2004) and oth-

er publications (Jarke et al. 1998; Rossi et al. 2004). In our experience, history has

been kind to that vision, and the solutions it presented are still valuable and rele-

vant for software development.

Since CAiSE ’96, large-scale methods for systems development have gradually

gone out of fashion. At the same time CASE tools have become standardized work

horses which can improve and support specific design and software development

tasks. The commercial CASE tool market has also largely vanished whilst many

powerful tools have been made open source (Eclipse) or offered for a very low fee

(Visual Studio). Comprehensive and integrated methods and workbenches have

been replaced with lightweight documentation and agile methods (Cockburn

2002).

At the same time method engineering tools have found a new lease of life as

language workbenches for Domain-Specific Modeling (DSM) (Kelly and

Tolvanen 2008). This fits with the idea of evolutionary ‘method prototyping’,

which was described and evaluated in Tolvanen’s thesis (1998). OMG’s MDA and

Microsoft’s Software Factories approach (Greenfield and Short 2004) have also

driven the demand for flexible tools like MetaEdit+. The methods and tools for

DSM have been honed in the OOPSLA DSM workshops2 starting in 2001

(Tolvanen et al. 2001), and the Language Workbench Challenge3 from 2011. Sev-

eral special issues have been published on DSM recently (Gray et al. 2004),

(Sprinkle et al. 2009) (Tolvanen et al. 2013).

2 http://www.dsmforum.org/DSMworkshops.html
3 http://www.languageworkbenches.net

The move towards

bly Nokia’s Jyrki Okkonen

teresting, but it takes industrial users

panacea: most MetaEdit+ users have been concentrated in areas such as embedded

systems (automotive, medical), consumer

communications. Common themes have often included some kind of product line,

a development space defined by use of an in

configuration of complex systems from modular parts.

3 MetaEdit+ at age 20

Since 1996 MetaEdit+ has evolved through industrial needs as well as innovation.

Many of the features included in the 1996 environment have proved their worth,

such as visual modeling, WY

evolution, reporting and code generation facilities

contrast, reverse engineering, hypertext, method rationale, and flexible queries and

transformations have been used relatively

MetaEdit+ contains several browsers allowing flexible method composition

from pre-defined parts. This was seen as a key feature of a method development

environment at that time

nents has rarely proven useful, except for large

gram types. The ability to reuse and reference individual elements has, however,

proved key for integration between modeling languages. Similarly

towards DSM use of MetaEdit+ emerged from its users, most not

Jyrki Okkonen. As is often the case, research can create something i

ut it takes industrial users to make it truly useful. DSM is however no

panacea: most MetaEdit+ users have been concentrated in areas such as embedded

systems (automotive, medical), consumer electronics, medical systems and tel

communications. Common themes have often included some kind of product line,

a development space defined by use of an in-house platform or framework, or the

configuration of complex systems from modular parts.

Fig1. Example model in MetaEdit+ 5.0 Diagram Editor

MetaEdit+ at age 20

Since 1996 MetaEdit+ has evolved through industrial needs as well as innovation.

Many of the features included in the 1996 environment have proved their worth,

such as visual modeling, WYSIWYG symbol definition, incremental metamodel

evolution, reporting and code generation facilities, and repository functions. In

contrast, reverse engineering, hypertext, method rationale, and flexible queries and

transformations have been used relatively little.

contains several browsers allowing flexible method composition

defined parts. This was seen as a key feature of a method development

environment at that time (Zhang 2000). In practice the reuse of method comp

nents has rarely proven useful, except for large-grained units such as whole di

gram types. The ability to reuse and reference individual elements has, however,

proved key for integration between modeling languages. Similarly, method

3

most nota-

As is often the case, research can create something in-

useful. DSM is however no

panacea: most MetaEdit+ users have been concentrated in areas such as embedded

electronics, medical systems and tele-

communications. Common themes have often included some kind of product line,

house platform or framework, or the

Since 1996 MetaEdit+ has evolved through industrial needs as well as innovation.

Many of the features included in the 1996 environment have proved their worth,

SIWYG symbol definition, incremental metamodel

repository functions. In

contrast, reverse engineering, hypertext, method rationale, and flexible queries and

contains several browsers allowing flexible method composition

defined parts. This was seen as a key feature of a method development

. In practice the reuse of method compo-

nits such as whole dia-

gram types. The ability to reuse and reference individual elements has, however,

, method ra-

4

tionale has not been used, but hyperlinking generated code back to the model ele-

ment that produced it has proved useful in practice.

MetaEdit+ was by no means a finished product in 1996 and many features have

been added since then. Here we will just mention a few features we consider most

important added between 1996 and the latest 5.0 release in 2012. The ability to

represent complex graphical objects has been found to be vital for implementing

many modeling languages, and for user acceptance of languages (See Fig1). The

WYSIWYG Symbol Editor from 1996 has been extended significantly with fea-

tures such as conditionality, dynamic templates, and SVG support. A new concept

of Port was introduced, making GOPRR into GOPPRR. In 1996, MetaEdit+ was

rather a monolithic, closed environment. Since then, support for a wide array of

common image and document formats has been added. Model and metamodel in-

formation can be exported and imported as binary files or in an open XML format,

and accessed and manipulated via an API. Open source plugins integrate

MetaEdit+ into Eclipse and Visual Studio IDEs.

3.1 Research impact

The MetaPHOR research group, from which MetaEdit+ was born, has produced

over 10 PhD theses and ca. 50 research papers — most of them after the publica-

tion of the paper4. MetaEdit+ has been used as a reference tool in several tool

comparisons (e.g. Kouhen El et al. 2012; Kern et al. 2011). The feature sets envi-

sioned have also formed lists for future tools and MetaEdit+ has been used in

many projects as a prototyping and development workbench in developing new

software development methods (Mewes 2009; Qureshi 2012; Leitner et al. 2012;

Preschern et al. 2012). Today more than 50 universities are using MetaEdit+ to

support both research and teaching. A 2008 IEEE Software article (Helsen et al.

2008) identified MetaEdit+ as being at the highest level of abstraction for all soft-

ware development tools, 15 years ahead of the curve. We would include the other

early DSM tools such as Vanderbilt’s GME (Ledeczi et al. 2001) and Honeywell’s

DoME (DoME Users Manual 1996) in this category too.

3.2 Industry reception and practical impact

The initial version of MetaEdit+ received recognition from BYTE magazine with

a ‘Best of CeBIT’95’ finalist award, with later versions recognized in the Software

Development Magazine Jolt awards (2004, 2005) and SDTimes top 100 (2007,

2008). MetaEdit+ has been used to develop a wide range of both software and

hardware solutions. A prime example is Nokia feature phones, which have sold

4 http://metaphor.it.jyu.fi/metapubs.html

5

over a billion units running code automatically generated from a DSM language in

MetaEdit+. Nokia estimated that applying DSM with MetaEdit+ increased

productivity by a factor of ten (Tolvanen and Kelly 2000). Similar results have

been achieved in fields as diverse as fish farming, insurance, railway systems,

home automation, telecom services, and wearable sports computers. A recent arti-

cle (Kouhen El et al. 2012) by committers on the Eclipse Papyrus modeling tool

compared MetaEdit+, IBM Rational Software Architect, Obeo Designer, GME

and Eclipse GMF. The same language, BPMN, was modeled from scratch with

each tool, recording the time taken (Fig. 2).

Fig. 2. Comparison of metamodeling time

4 Summary

Advanced information systems engineering has changed technically significantly

in the last 25 years. When we started work on metaCASE tools, there were no

good graphics or persistency libraries available, so everything had to be developed

from scratch. In 2013, creating tool support for modeling language engineering is

technically easier, yet still conceptually challenging.

It can be argued that effective adoption and deployment of tools such as

MetaEdit+ is no longer limited by the tool capabilities, but by the challenges of

organizing the work through (meta)modeling and the intellectual challenges of de-

veloping original methods through DSM that can provide the necessary productiv-

ity payback. After the divergence to hundreds of languages in the 1980s, the con-

vergence toward the dominance of UML left only a few creating their own

languages. There is currently a dearth of knowledge of the principles and benefits

of high-level language creation and implementation in industry. Hopefully the re-

12

6

0,5

5

25

0

5

10

15

20

25

30

RSA GME MetaEdit+ Obeo GMF

Days to implement BPMN

6

cent growth of language development and uptake of DSM tools in universities can

seed a new generation of language creators.

References

Cockburn A (2002) Agile Software development. Addison-Wesley,
DoME Users Manual (1996). Honeywell Technology Center, Minneapolis
Gray J, Rossi M, Tolvanen J-P (2004) Domain-Specific Modeling with Visual Languages.

Journal of Visual Languages & Computing 15 (3-4):207-330
Greenfield J, Short K (2004) Software Factories: Assembling Applications with Patterns,

Models, Frameworks, and Tools. Wiley, Indianapolis

Helsen S, Ryman A, Spinellis D (2008) Where's My Jetpack? IEEE Software 25 (5):18-21
Jarke M, Pohl K, Weidenhaupt K, Lyytinen K, Marttiin P, Tolvanen J-P, Papazoglou M (1998)

Meta Modeling: A Formal Basis for Interoperability and Adaptability. In: Krämer B,

Papazoglou M (eds) Information Systems Interoperability. John Wiley Research Science
Press, pp 229-263

Kelly S (1997) Towards a Comprehensive MetaCASE and CAME Environment: Conceptual,

Architectural, Functional and Usability Advances in MetaEdit+. PhD Thesis, University of
Jyväskylä, Jyväskylä

Kelly S, Lyytinen K, Rossi M (1996) MetaEdit+: A Fully Configurable Multi-User and Multi-

Tool CASE and CAME Environment. In: Constapoulos P, Mylopoulos J, Vassiliou Y (eds)
Advanced Information Systems Engineering, proceedings of the 8th International Conference
CAISE'96. Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp 1-21

Kelly S, Tolvanen J-P (2008) Domain-Specific Modeling: Enabling full code generation. Wiley-
IEEE Computer Society Press

Kern H, Hummel A, Kühne S Towards a Comparative Analysis of Meta-Metamodels. In: Rossi

M, Sprinkle J, Gray J, Tolvanen J-P (eds) Proceedings of the 11th Workshop on Domain-
Specific Modeling, 2011.

Koskinen M (2000) Process metamodelling - Conceptual foundations and application.

Dissertation, University of Jyväskylä
Kouhen El A, Dumoulin C, Gérard S, Boulet P (2012) Evaluation of Modeling Tools Adaptation.

http://tinyurl.com/gerard12

Kumar K, Welke R J (1992) Methodology Engineering: A Proposal for Situation Specific
Methodology Construction. In: Kottermann W W, Senn J A (eds) Challenges and Strategies
for Research in Systems Developmen. John Wiley & Sons, Washington

Ledeczi A, Maroti M, Bakay A, Karsai G, Garrett J, Thomason C, Nordstrom G, Sprinkle J,
Volgyesi P The generic modeling environment. In: Workshop on Intelligent Signal
Processing, Budapest, Hungary, 2001.

Leitner A, Preschern C, Kreiner C (2012) Effective development of automation systems through
domain-specific modeling in a small enterprise context. Software & Systems Modeling

Marttiin P (1998) Customisable Process Modelling Support and Tools for Design Environment.

Dissertation, University of Jyväskylä, Jyväskylä
Mewes K (2009) Domain-specific Modelling of Railway Control Systems with Integrated

Verication and Validation Disseration

Preschern C, Leitner A, Kreiner C (2012) Domain-Specific Language Architecture for
Automation Systems: An Industrial Case Study. Paper presented at the Workshop on
Graphical Modeling Language Development,

Qureshi T (2012) Enhancing Model-Based Development of Embedded Systems Dissertation.
Disseration,

7

Rossi M (1998) Advanced Computer Support for Method Engineering: Implementation of

CAME Environment in MetaEdit+. Dissertation, University of Jyväskylä, Jyväskylä
Rossi M, Ramesh B, Lyytinen K, Tolvanen J-P (2004) Managing Evolutionary Method

Engineering by Method Rationale. Journal of AIS 5 (9 article 12)

Smolander K, Lyytinen K, Tahvanainen V-P, Marttiin P (1991) MetaEdit-A Flexible Graphical
Environment for Methodology Modelling. In: Andersen R, J. A. Bubenko jr., Solvberg A
(eds) Advanced Information Systems Engineering, Proceedings of the Third International

Conference CAiSE'91. Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp 168-
193

Sprinkle J, Mernik M, Tolvanen J-P, Spinellis D (2009) Special issue on Domain-Specific

Modeling editorial. IEEE Software 26 (4)
Tolvanen J-P (1998) Incremental Method Engineering with Modeling Tools: Theoretical

Principles and Empirical Evidence. Dissertation, University of Jyväskylä,

Tolvanen J-P, Gray J, Lyytinen K, Kelly S Proceedings of 1st OOPSLA Workshop on Domain-
Specific Visual Languages. In: Tolvanen J-P, Gray J, Lyytinen K, Kelly S (eds) Proceedings
of 1st OOPSLA Workshop on Domain-Specific Visual Languages, 2001. Jyväskylä

University Printing House,
Tolvanen J-P, Kelly S (2000) Benefits of MetaCASE: Nokia Mobile Phones Case Study.

MetaCase Consulting plc. http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf.

Accessed 1/7 2004
Tolvanen J-P, Rossi M, Gray J (2013) Theme Issue on Domain-Specific Modeling in Theory and

Applications editorial. Journal of Software and Systems Modeling to appear

Zhang Z Defining components in a MetaCASE environment. In: CAiSE'00, Stockholm, Sweden,
2000. Springer-Verlag,

Zhang Z (2004) Model component reuse : conceptual foundations and application in the

metamodeling-based systems analysis and design environment. Dissertation, University of
Jyväskylä, Jyväskylä

