
How Domain-Specific Modeling Languages Address Variability
in Product Line Development: Investigation of 23 Cases

Juha-Pekka Tolvanen
MetaCase

Jyväskylä, Finland
jpt@metacase.com

Steven Kelly
MetaCase

Jyväskylä, Finland
stevek@metacase.com

ABSTRACT
Domain-Specific Modeling raises the level of abstraction beyond
programming by specifying the solution directly with domain con-
cepts. Within product lines domain-specific approaches are applied
to specify variability and then generate final products together
with commonality. Such automated product derivation is possible
because both the modeling language and generator are made for a
particular product line — often inside a single company. In this pa-
per we examine which kinds of reuse and product line approaches
are applied in industry with domain-specific modeling. Our work
is based on empirical analysis of 23 cases and the languages and
models created there. The analysis reveals a wide variety and some
commonalities in the size of languages and in the ways they apply
reuse and product line approaches.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Model-driven software engineering;Domain specific langua-
ges; Abstraction, modeling and modularity; System modeling lan-
guages; feature modeling.

KEYWORDS
Domain-specific language, domain-specific modeling, product line
variability, product derivation, code generation
ACM Reference Format:
Juha-Pekka Tolvanen and Steven Kelly. 2019. How Domain-Specific Model-
ing Languages Address Variability in Product Line Development: Investi-
gation of 23 Cases. In 23rd International Systems and Software Product Line
Conference - Volume A (SPLC ’19), September 9–13, 2019, Paris, France. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3336294.3336316

1 INTRODUCTION
Domain-specific languages and models raise the level of abstrac-
tion beyond programming by specifying the solution directly with
domain concepts. This is particularly suitable in product line de-
velopment, as variability and related rules are part of the language
used to create specifications of variants. The final products are then
generated from these high-level specifications. This automation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00
https://doi.org/10.1145/3336294.3336316

is possible because both the language and generators need fit the
requirements of only this product line. A language-based approach
for product lines manages a larger variability space, enables more
freedom and flexibility and allows creating variations not possible
with other approaches like parameter tables or feature models [4].

While Domain-Specific Modeling (DSM) solutions are widely
applied [17, 19] and industrial cases using them are also included
in the Product Line Hall of Fame1, there are few studies analyzing
which kind of languages have been created and applied in industry.
Studies analyzing languages within product lines tend to focus
on feature modeling languages, their extensions [3, 18, 25] and
comparisons of them [1, 5, 22]. When domain-specific languages are
addressed, the evaluation and comparison is focused on considering
different languages structures for a given situation and product
line (e.g. [13, 15]). Studies analyzing larger numbers of domain-
specific languages have focused on approaches to finding language
constructs [19] or identification of worst practices [9].

In this study we investigate which kinds of languages companies
have created for their product lines. In particular we focus on how
these DSM languages define variants and reuse these variant defini-
tions. We take an empirical approach, analyzing 23 industry cases
and the DSM languages created in them. Our analysis investigates
the language definitions (metamodels), their target output (e.g. pro-
gram code generated), the people involved in language creation,
and the reuse enabled by the language both outside of and within
the models. The analysis shows that the sizes of the languages vary
greatly (the largest being 14 times larger than the smallest) and that
the cases use a wide variety of language structures for managing
variation.

In the next section we describe the product line cases and how
the languages were analyzed. Section 3 describes and gives exam-
ples of the different approaches (modeling language structures and
processes) for supporting product line development that we identi-
fied. Section 4 analyzes the data and evaluates this categorization
of approaches, and Section 5 summarizes our conclusions.

2 ABOUT THE ANALYZED PRODUCT LINES
This study is based on analyzing 23 industry cases of domain-
specific modeling applied to product lines. They were selected
from cases over the last 15 years where the authors have had access
to the language definition — often in a consultant role supporting
language and generator creation, but not having the sole respon-
sibility for their creation. All modeling languages and generators
were thus implemented in MetaEdit+ [7, 12]. The language patterns
recognized, however, are not limited to any particular tool. To avoid

1http://splc.net/hall-of-fame/

https://doi.org/10.1145/3336294.3336316
https://doi.org/10.1145/3336294.3336316

SPLC ’19, September 9–13, 2019, Paris, France Juha-Pekka Tolvanen and Steven Kelly

Table 1: Product line DSM cases analyzed

Domain Targets By Size Use Approach
1 Consumer electronics C, HTML, Docs 1 3 1
2 Industrial automation PLC, GUI, DB schema, net config, deploy 1 165 5 1
3 Enterprise applications C#, DB schema 1 6 1
4 Railway signaling Simulation, XML 1 291 6 1
5 Signal Processing Systems Matlab, simulation, XML 1 4 1
6 Oil drilling Cost calculation, documentation 1 3 1
7 Big data applications Java, JSON, CQL, SPARQL, SQL 2 397 4 1
8 Printing process Ruby, XML, Docs 3 55 4 1
9 System performance Gherkin, HTML, Docs 1 145 3 1
10 Consumer electronics JSON 3 72 2 2
11 Telecom service XML 1 61 2 2
12 Medical XML, audit documents, change history 1 63 1 2
13 High-level synthesis System C 1 450 3 2
14 Radio network TTNC-3, simulation/animation 1 5 2
15 An automotive system System specification 3 62 3 2
16 Database applications Java 3 46 1 2
17 Consumer electronics C, localization, docs 1 403 6 3
18 Automotive architecture Simulink, ISO26262 documents, AUTOSAR 3 652 6 3
19 Telecom C, build automation 2 109 3 3
20 Insurance Cobol, DB schema 3 234 6 4
21 Aerospace C#, XSD, JSON, API 2 121 1 5
22 Automotive ECU Python, JSON, Test document, change history 3 64 5 5
23 Software testing Propriety format of state machines 3 317 6 6

repeating ourselves, we chose only cases not already covered in
our 2005 article [19].

All the language definitions were created freely by metamodel-
ing, rather than being limited to being customizations, extensions
or profiles of existing languages. Complete freedom was thus avail-
able when defining the language, and tooling did not restrict the
language structures applied or created. Other approaches have
also been seen in the literature on modeling and product lines: e.g.
already available support for feature modeling could be applied
directly or be extended in a preferred way, as suggested in [1, 5, 22].
Similarly, UML could be extended with stereotypes and profiles,
or companies could consider defining both metamodel-based and
profile-based as in [13].

The cases were chosen to cover different kinds of product lines
from various industries: from consumer electronics through data-
base applications to automotive and industrial automation systems.
Table 1 summarizes these cases by their problem Domain and
other features, in a roughly increasing order of model-level focus
on product line aspects.

In all cases, DSM was applied not simply for planning, design or
to support communication, but to automate development within
a product line by performing model checking and generating ex-
pected output from the models: typically code but in some cases
also other formal models, configurations, audit specifications and
documentation. The main outputs generated are listed in Table 1
column ‘Targets’.

Languages were created with varying amounts of domain and
language creation experience, as shown in Table 1 column ‘By’:

(1) The organization in-house
(2) An external consultant with language creation expertise
(3) Both

The size of the DSM languages varied significantly: the smallest
consisting of 46 language constructs and the largest 652 constructs.
These values (where known) are shown in Table 1 column ‘Size’. As
a comparison, UML 2.5 [14] has 247 constructs when implemented
with the same GOPPRR meta-metamodel [7, 12].

The cases also varied in how far along the adoption path the
language had progressed (shown in Table 1 column ‘Use’):

(1) Language still under definition
(2) Sample models made with stable language
(3) Significant modeling of real cases as test
(4) Real pilot project
(5) Production use
(6) Long term production use

Data on the use of the languages, such as how many variants
within the product line had been developed, was not available for
all cases. Among the cases where it was known, there was a wide
variation: from just a few to hundreds of variants.Where data on the
effort for creating and maintaining the languages in questions was
available, it has been published in [21], and cross-tool comparisons
of effort also exist, e.g. [11]. For details of the success and impact
of using DSM in practice see [20, 24].

The final column in Table 1, ‘Approach’, is described in the
following section.

How Domain-Specific Modeling Languages Address Variability: Investigation of 23 Cases SPLC ’19, September 9–13, 2019, Paris, France

3 HOW LANGUAGES ADDRESSED
VARIABILITY

The classification of the approaches for specifying variation was
gathered mostly from the language definitions available to authors.
The language definitions could thus be investigated directly in
MetaEdit+, and sample variant models created. For the investiga-
tion we also analyzed the variant models created, and verified our
understanding from the consultants or in-house developers who
were involved in creating the languages and generators.

Common to all languages was that they described the variability
and left most of the commonality to existing legacy, platforms,
components etc. Often a domain framework is created alongside
the language, extracting further commonality. Those commonality
parts are then integrated via generators.

The analysis of the cases and their languages led us to identify
six approaches for addressing variability and reuse. The categoriza-
tion is mostly based on language definitions but also extends into
questions of process, and some approaches may require particular
tool support features. The main criteria for the identification were if
the created models are reused among variants, and how that reuse
was established and maintained. If certain commonly reused parts
of variants were maintained centrally and provided to all modelers
when creating a new variant, these were considered ‘core’ models.

Data from the cases indicated the following spectrum and cate-
gorization of ‘Approach’ (the final column in Table 1):

(1) Each model and its elements are for a single variant
(2) Reuse of models or model elements across multiple variants
(3) Mark/filter/modify reused models or elements for variants
(4) Core models and variant models
(5) Core models and languages for restricted variation of core
(6) Multilevel: model elements become language elements

This list of approaches is not complete but reveals the typical
approaches applied, some more common than others. The ordering
follows our interpretation of how great a focus the approaches
place on explicit product line support. In our experience the later
approaches also often contain earlier ones, and as a language is
developed and used, it may move further along the scale of ap-
proaches. In the following subsections we describe each approach
in more detail and illustrate their use with practical examples (using
real examples from cases where allowed).

3.1 Each model and its elements are for a
single variant

The classical approach for applying domain-specific languages is
described by [23]: The language focuses on describing the vary-
ing parts, whereas the common parts, defined in the framework,
components etc., are outside the scope of the language. During
the variant derivation phase the generator reads the models and
integrates the variant design with the common parts in legacy code,
frameworks etc.

A key feature of languages following this approach is that mod-
elers focus on developing one variant at once: all changes made
to the models are done within the context of a single variant. This
approach is organizationally clear: the product development team
owns all aspects of variability, has sole responsibility on testing,

versioning etc. Such languages are typical in cases such as provid-
ing telecom services per operator, an industrial automation system
per factory or a service per customer.

Fig. 1 and Fig. 2 illustrate this with a practical example [16]. A
company manufacturing automation systems for fish farms creates
a separate specification for each customer and their system. For
every Aerator being delivered as a part of the system, the language
allows the modeler to set specific values for the variant (or use
defaults), e.g. for the voltage and what kind of oxygen is used.
The language sets this variation space and with a simple example
like in Fig. 1, this part of the language can be considered to be a
configurator over the parameters of the whole product line offering.

Figure 1: Setting values for a variant of Aerator

In practice, all variation is not so simple. The unit of variability
can be any aspect of the product line that can be expressed with a
language. For instance, additional variation related to an Aerator
can be its location, relation to fish ponds, network and power supply
etc. DSM languages enable capturing this richer variation too, as
illustrated in Fig. 2, which shows a portion of an automation system
in which a particular Aerator is one varying part. For example, the
blue ellipses are ponds for the fishes and one aspect of variability
is their location. The variant also specifies other customer-specific
features (lights, feeding, monitoring Ph level, muddiness, tempera-
ture etc.) and a network with related configuration. Location, order,
connection and behavior are all kinds of variation that can be dif-
ficult or impossible to express with wizards, parameter tables or
feature models, but fit well to DSM.

From the variant models like Fig. 2 the company produces PLC
code for an automation system, database definitions for storing per-
sistent data, network configuration for the given setup, installation
guidelines, material needs etc. The location of the ponds is used
to produce a user interface to monitor and control the automation
system.

Languages focusing on a single variant are useful when variant
development teams work independently and there is no need to
share functionality created for one variant with others. If such a
need arises without proper language support, often the only choice
left is clone and own — and keeping track of changes made in the
original variant model and copies.

SPLC ’19, September 9–13, 2019, Paris, France Juha-Pekka Tolvanen and Steven Kelly

Figure 2: Variant of fish farm automation for a given customer

3.2 Reuse of models or model elements in
multiple variants

When more variants are being developed, often a need arises to
reuse existing work: Functionality that is already defined for one
variant is found useful for others too. To avoid clone and own, a
sub-model or element is allowed to be referred to by more than one
variant. (Having a hierarchy of models, and even allowing reuse
of a sub-model, are also found in Approach 1, but there the reuse
is always within a single variant.) As in Approach 1, the top-level
model’s name is often effectively the variant name.

Fig. 3 and Fig. 4 illustrate examples of reuse in the CPL language
used to specify how calls are processed for a telecom operator’s cus-
tomers. Fig. 3 specifies one customer’s call redirection service which
uses voicemail redirection (subaction block at the bottom) based on
location. Similarly, another customer’s service for location-based
redirection defined in Fig. 4 reuses the same voicemail redirection
service in a more complex rule. The reused service is defined only
once and applied in several variants. The variant models then detail

Figure 3: Location-based call redirection to voice mail

the contexts (e.g. busy, noanswer, etc.) in which the reused subac-
tion is used. In other words, the language knows the correct ways
to reuse the subaction and can guide and check variant creation
during specification.

How Domain-Specific Modeling Languages Address Variability: Investigation of 23 Cases SPLC ’19, September 9–13, 2019, Paris, France

Figure 4: Call redirection reusing voice mail redirection

The reused service can be provided as a whitebox or a blackbox
component depending on whether its details are made visible. In-
troducing model reuse raises similar questions as any other kind
of reuse: Can reusers see the details, can they change them, is
this reuse by reference or copy, etc. Also questions arise about the
different lifecycles of reused parts and variant-specific parts: Are
updates and bug fixes to reused parts delivered automatically to
their users? Modeling tools may also offer support for governance
and management with access rights, review policy etc. We discuss
the role of tools for variability later in Section 3.4.

While this small example is based on the same language, i.e.
reusable services are specified with the same language as all other
services, it is possible to have different languages for different
users (e.g. one for service creators at operator side and another for
implementing the services, as presented in [6]). When languages
are different among teams this also clarifies the responsibility of
core team and variant development teams.

3.3 Explicit ability to mark, filter or modify
models or elements for variants

Once elements can be reused as in Approach 2, there often arises
a need to change those elements somewhat in particular variants.
For example, model elements can be marked as only being present
or active in certain variants (or other conditions), or a higher-level
model can specify to include a lower-level model with certain fil-
tering or configuration. The former can be considered bottom-up
variant specification, and the latter top-down. In both cases, new
concepts to explicitly specify variation are added to the language
(in contrast to Approach 2, where the language remained the same.)

An example of bottom-up variant specification is seen in Fig.
5, which shows an excerpt of the UI and interaction flow of a car
infotainment system. A definition for display ’Navigation system’
is selected and its property dialog is shown. In the dialog, the
Availability property value defines that this ’Navigation system’
display is provided only when the GPS module is available. Also all
other functionality related to the Navigation display like its menus,
knobs etc. are excluded as well as any other displays reachable only
via the Navigation display. While the variability is set here based

Figure 5: Variation of infotainment system for GPS sensor

on the sensors available, it could be also based on product names
(e.g. available only for infotainment system ‘CarInfo3000’), features
(e.g. available only for Autopilot) etc. A downside of this approach
is that the properties like availability need to be entered — and
later possibly modified — in multiple places (e.g. displays in this
example).

Rather than adding variant information to individual language
elements, the top-down approach extracts variant information to a
new, higher model layer: A dedicated language is used to configure
existing models defined for variants. Fig. 6 illustrates this top-down
approach, showing a watch product family consisting of three mem-
bers: Delicia, Ace and Sporty. While here one model specifies all
three variants, each product could have a separate configuration
model. In this example product line, each watch contains a display
(on the left) and a logical behavior (on the right) whose submodel
contains a number of applications, such as alarm or stopwatch.

One application, Stopwatch, is illustrated in Fig. 7. It allows the
user to start the stopwatch running, showing the elapsed time and
an icon while in that Running state; stop the stopwatch; and reini-
tialize the elapsed time. All three variants use the same specification
of the Stopwatch application, yet in a different manner as specified
in the higher-level family model. For example, Sporty has an icon
for Timer but none for Stopwatch, so the stopwatch icon is not
shown in Sporty when Stopwatch is running.

With this kind of language, variant developers can decide if ex-
isting variant models already contain the needed functionality and
add a configuration using them. New products can thus be cre-
ated quickly by referencing and configuring existing functionality.
Alternatively, the development team can extend an existing func-
tionality for the new variant but in a manner that the functionality
for existing products is maintained.

With languages following this approach, the variant develop-
ment teams take responsibility for the whole product line, not just
their variant. The models created then need to be versioned and

SPLC ’19, September 9–13, 2019, Paris, France Juha-Pekka Tolvanen and Steven Kelly

Figure 6: Watch family

Figure 7: Stopwatch application supporting several variants
(Ace, Delicia, Sporty)

tested together. This may well require establishing different policies
for variant development teams than when using languages whose
models each address only one variant.

3.4 Core models and variant models
Product line companies generally differentiate the platform and
other commonalities, developed by the ‘core team’, and the indi-
vidual variants developed by ‘product development teams’. While
DSM has generally already moved the core commonalities out of
the modeling language, modeling several variants generally reveals
some parts of variant models that are first reused in another vari-
ant (as in Approach 2), and later recognized as being useful to all
variants. These ‘core models’ can then be supplied to each team

starting a new variant, and can be maintained separately by a ‘core
modelers’ team. This explicit recognition, decision and separation
of core models is what distinguishes Approach 4 from Approach 2.

At least initially there are generally no clear differences in the
domain itself on which parts can be core and which parts can be
specified for a given variant, and so the modeling language can be
the same for both teams.When languages do not address variation it
is then left to the tooling and processes. Such tool-based approaches
then vary based on tool functionality and their integration with
other data and the other tools used.

Tools may provide in-built support for working with core models
and variant models. For example, models can be defined in different
repositories or projects within the modeling tool and their access
can be restricted for different teams. Typically product development
teams may not be allowed to change core models or their individual
elements but just use them. For example, in a MetaEdit+ multi-user
repository, a project’s model elements can be set to be read-only,
so that only members of the core team can change them and others
may only refer to them in their designs. When the core changes,
the variant development teams see the updates automatically.

Alternatively, it is possible that core models are maintained sep-
arately and the core team can release them with dedicated content
and versions. For example, different versions of the core models can
be released to different variant development teams or different sets
of core models can be released to different variant teams. Variant
development teams may then also decide when to update to the
next version of the core.

Tool support is needed to manage sharing and updating core
models for teams applying them in product development. For exam-
ple, in MetaEdit+, a core team can release models to be imported in
separate repositories used by product development teams — and dif-
ferent rights can be set if changes to them are allowed or not. When
the core models change, the core team can release the changed
models and choose that they will automatically update previously
delivered core models. This approach is applicable if there are sub-
contractors involved that do not get access to all designs, or de-
velopment teams are working remotely in different locations, or
there is otherwise a need to keep variant models made for different
customers separate (as in Approach 1).

3.5 Core models and languages for restricted
variation of core

Among the cases analyzed we also found examples where modi-
fications to the reused core were allowed but in a restricted way.
The need for modification and the type of modifications allowed
were identified during domain analysis and language definition.
This approach is illustrated with a class diagram using an exam-
ple of library variants from [2]. Fig. 8 shows a small core model
in MetaEdit+ containing just two classes that are common for all
library systems. This model is created by the core development
team.

A variant development team then creates a product using a mod-
eling language that restricts the modifications to the core models.
Fig. 9 illustrates the use of this language. A variant of library system
for public libraries uses both ‘LoanManager’ and ‘Account’ from
the core, but allows adding new functionality created just for the

How Domain-Specific Modeling Languages Address Variability: Investigation of 23 Cases SPLC ’19, September 9–13, 2019, Paris, France

Figure 8: A small example of core model for a library

variant, like ‘ReservationList’ in the example. More importantly, the
‘Account’ class from the core has been modified in two ways — as
allowed by the modeling language. A new attribute for maximum
number of loans has been added and an existing attribute for iden-
tification is made mandatory. The notation of the language makes
clear the parts used from the core and the type of modifications
that have been made to them. Both the notation and the kinds of
modifications allowed are set by the language creators.

Figure 9: Creating a variant by customizing the core

With this approach the core parts can evolve and be updated, yet
at the same time their modification in variant projects is possible.

The tooling can also check for possible inconsistencies and report
them as illustrated in Fig. 9. Here the variant development team has
made the ‘id’ attribute mandatory but it has later been changed to
be mandatory in the core too. MetaEdit+ checks the variation rules
and reports on possible inconsistencies: See the error text below
the diagram stating ‘id in core is already set mandatory’. Variability
rules defined are not only applied when creating the models but
also while editing, generating variants etc.

While this example is very small and shows just three ways
to extend the core, the same principle for setting restrictions on
how core models can be modified can be applied for other kind
of extension rules and for other, more domain-specific, languages
than the class diagrams shown here.

3.6 Multilevel: model elements become
language elements

Finally, in one particular product line DSM case we identified a
pattern known as multilevel modeling: A model created in one role
or by certain developers is used to form language elements for the
others. This is illustrated below with a small example on sensors
available for a variant. Fig. 10 shows a model of possible sensors
and their characteristics, such as what they measure and how they
can be applied, e.g. with continuous polling or low energy usage.
In the multilevel approach, a model specifies here capabilities of
the device been used. For example, there is a polling sensor for
orientation providing a compass direction.

Figure 10: Adding an Orientation sensor language concept

This model then forms a part of the language used to specify
applications for the given device variant. Fig. 11 illustrates this lan-
guage being used to specify tracking using an Orientation sensor.
As it is polling-based, the model states that data from the Orien-
tation sensor is read every 15 minutes. If the compass direction is

SPLC ’19, September 9–13, 2019, Paris, France Juha-Pekka Tolvanen and Steven Kelly

South, the bottom transition is triggered and a message is sent to
the given phone number. All available language concepts — includ-
ing the newly-added Orientation sensor — are visible in the toolbar
of the modeling tool. Refining the sensors in Fig. 10 thus updates
the language being used for variant development in Fig. 11.

Figure 11: Using an Orientation sensor in a variant

As in the previous two approaches, there is a clear possibility for
having different kinds of users or roles. Changing the language also
opens up the normal tool support questions of language evolution:
fortunately one of the strengths of the tool in this case [10].

4 EVALUATION OF THE CASE DATA AND
PRELIMINARY ANALYSIS

Among the cases analyzed, the commonest approaches were Ap-
proach 1: languages for a single variant (9 cases) and Approach 2:
languages designed for reusing models or model elements among
variants (7 cases). The large number of languages focusing on sin-
gle variants is understandable as they are the simplest in terms of
process, and proven practices for creating such languages have long
been available (e.g.[23]). The entire support for product line engi-
neering is provided by the language and generators, with no explicit
mention of variants, and no cross-variant reuse in the models.

Our experience that the Approaches form an ordering received
some support and no refutation from the data. Two cases which
originally focused on single variants (Approach 1) later encountered
the need for reuse and moved to Approach 2 (#10, #11), and two
others to Approach 3 (#17, #19).

When analyzing how the languages were developed, we identi-
fied that almost all languages developed in-house, without support
from external consultants, fell into Approaches 1 and 2. A one-tailed
Pearson correlation of 0.52 was found between increasing explicit-
ness of product line approach and increasing categories of language

creator expertise involved, statistically significant with P < 0.01. No
correlation (0.04) was found between language creators and how
far the language progressed along the path to full production use.

It is clear from Table 1 that the sizes of the languages vary
considerably: the largest is 14 times the size of the smallest. The data
also showed that among the largest languages were those that have
been applied for a long time (#17, #18, #20, #4). A one-tailed Pearson
correlation of 0.60 was found between Size and Use, statistically
significant with P < 0.005. No correlation (0.07) was found between
Size and Approach.

We also investigated whether the type of modeling language
chosen had an effect on Size, Use or Approach. Language types
were classified based on their main focus or model of computation
as Location, Costs, UI, Query, Structure, State machine, UI flow,
Data flow, Action flow, Sequence and Data structure. A single case
often included two language types. Although all cases using the
simplest four language types at the start of this list also used the
simplest single-variant Approach 1, the effect was not statistically
significant because of the small sample size for those language
types (only one or two cases for each of those language types).

5 CONCLUSIONS
In this study we analyzed 23 industry cases where domain-specific
modeling languages were created for product line development. In
particular we investigated how domain-specific languages handle
reuse of the variant specifications. The cases were selected to cover
different kinds of product lines from various industries. The oldest
languages included in the analysis have been used for over 10 years
and the newest only just created.

The analysis of languages focused on their definitions (meta-
models), along with broader information about the area targeted
and the creation and adoption process. We applied the languages
in a tool to investigate how variant specifications can be created
and reused.

In the cases studied, we identified six different approaches to
supporting product line development in DSM. With even the most
basic DSM language already supporting product line development
implicitly, it was interesting to see that over half the languages were
developed to provide further product line support. A third of the
languages added reuse of variant models or model elements, and
another third offered various kinds of explicit modeling of variation.
The list of approaches is obviously not complete, but it gives an
indication of the richness of language structures that can be applied
to support product lines with DSM.

The majority of these languages were created in-house, with-
out support from external consultants. In the cases where other
language definition approaches were applied external consultants
were involved. This can be explained that these cases called for
more experience on language design (like adding configuration for
variability) or even on the particular tool, at least at the highest end
(support for multi-level modeling).

More research work is needed to analyze the benefits of each
approach, its costs in terms of the creation and maintenance effort,
and what aspects within the case have led to the chosen approach.
Future work can also extend the number of cases analyzed, and
cover DSM solutions created by other tools. We are not aware

How Domain-Specific Modeling Languages Address Variability: Investigation of 23 Cases SPLC ’19, September 9–13, 2019, Paris, France

of studies investigating numerous industry cases that used other
tools, and welcome such studies addressing language creation with
other tools and technologies. Other research methods could also be
applied, e.g. giving more detailed analysis of language evolution
within an individual case. Conversely, the scope could be widened
by a survey.

Perhaps the most encouraging aspect of this research was to see
how many cases were able to use MetaEdit+ to successfully imple-
ment a product line approach with DSM, even with only in-house
resources. With so much development still taking place by clone
and own, any approaches and tools that can offer organizations a
reliable path to product line development are welcome.

REFERENCES
[1] Acher M., Heymans P., Collet P., Quinton C., Lahire P., Merle P., Feature Model

Differences. In: Ralyté J., Franch X., Brinkkemper S., Wrycza S. (eds) Advanced In-
formation Systems Engineering. CAiSE 2012. Lecture Notes in Computer Science,
vol 7328. Springer, 2012

[2] Atkinson, C., Bunse, C., Bayer, J., Component-based Product Line Engineering
with UML, Pearson Education, 2002

[3] Cognini, R, Corradini, F., Polini, A., Re, B., Extending Feature Models to Express
Variability in Business Process Models, In proceedings of Advanced Information
Systems Engineering Workshops, Springer, 2015

[4] Czarnecki, K., Eisenecker, U., Generative Programming, Methods, Tools, and
Applications, Addison-Wesley, 2000

[5] Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wąsowski, A., Cool fea-
tures and tough decisions: a comparison of variability modeling approaches. In
Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS ’12). ACM, 2012

[6] Hulshout, A., Service Creation with MetaEdit+: A telecommunications solution.
Presentation at Code Generation Conference, Cambridge, May 19th, 2007

[7] Kelly, S., Lyytinen, K., Rossi, M., MetaEdit+: A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment. In: Constantopoulos P., Mylopoulos
J., Vassiliou Y. (eds) Advanced Information Systems Engineering. CAiSE 1996.
Lecture Notes in Computer Science, vol 1080, Springer, 1996

[8] Kelly, S., Tolvanen, J.-P., Domain-Specific Modeling: Enabling Full Code Genera-
tion, Wiley-IEEE Computer Society Press, 2008

[9] Kelly, S., Pohjonen, R., Worst Practices for Domain-Specific Modeling, IEEE
Software, Vol. 26, 4, 2009

[10] Kelly, S., Tolvanen, J.-P., Collaborative creation and versioning of modeling
languages with MetaEdit+. In: Proceedings of the 21st ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings (MODELS ’18), Babur, Ö., Strüber, D., Abrahão, S., Burgueño, L.,
Gogolla, M., Greenyer, J., Kokaly, S., Kolovos, D., Mayerhofer, T., Zahedi, M. (eds.).
ACM, pp. 37–41, 2018

[11] El Kouhen, A., Dumoulin, C., Gerard, S., Boulet, P., Evaluation of Modelling Tools
Adaptation. CNRS HAL hal-00706701, 2012, http://tinyurl.com/gerard12

[12] MetaCase, MetaEdit+ Workbench 5.5 User’s Guide, www.metacase.com, 2018
[13] Mewes, K., Domain-specificModeling of RailwayControl Systemswith Integrated

Verification and Validation, Ph.D. thesis, University of Bremen, 2009
[14] Object Management Group, Unified Modeling Language, Version 2.5.1, 2017
[15] Preschern, C., Kajtazovic, N., Kreiner, C., Evaluation of Domain Modeling Deci-

sions for Two Identical Domain Specific Languages, Lecture Notes on Software
Engineering 2, 1, 2014

[16] Preschern, C., Leitner, A., Kreiner, C., Domain-Specific Language Architecture
for Automation Systems: An Industrial Case Study, In: Joint Proceedings of co-
located Events at the 8th European Conference on Modelling Foundations and
Applications (eds. Störrle et al.) DTU Informatics, 2012

[17] Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellis, D., What Kinds of Nails Need a
Domain-Specific Hammer? IEEE Software, Vol. 26 , 4, 2009

[18] Sousa, G., Rudametkin, W., Duchien, L., Extending feature models with
relative cardinalities, Proceedings of the 20th International Systems
and Software Product Line Conference, Beijing, China, ACM, 2016,
https://doi.org/10.1145/2934466.2934475

[19] Tolvanen, J.-P., Kelly, S., Defining Domain-Specific Modeling Languages to Auto-
mate Product Derivation: Collected Experiences. Proceedings of the 9th Interna-
tional Software Product Line Conference, Obbink, H., Pohl, K. (eds.). Springer-
Verlag, LNCS 3714, 2005

[20] Tolvanen, J-P. and Kelly, S. Model-Driven Development Challenges and Solutions
- Experiences with Domain-Specific Modelling in Industry. In Proceedings of
the 4th International Conference on Model-Driven Engineering and Software
Development, SCITEPRESS Science and Technology Publications, Lda, 2016

[21] Tolvanen, J.-P., Kelly, S., Effort Used to Create Domain-Specific Modeling Lan-
guages. In ACM/IEEE 21th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS 18), ACM, New York, NY, USA, 2018

[22] Wahyudianto, Budiardjo, E., Zamzami, E., Feature Modeling and Variability Mod-
eling Syntactic Notation Comparison and Mapping, Journal of Computer and
Communications, 2014

[23] Weiss, D., Lai, C.T.R., Software Product-line Engineering, Addison Wesley, 1999
[24] Whittle, J., Hutchinson, J., Rouncefield, M., The State of Practice in Model-Driven

Engineering, IEEE Software, 31, 3, 2014
[25] Zaid, L, Kleinermann, F., Troyer, O., Feature Assembly: A New Feature Mod-

eling Technique, Proceedings of 29th International Conference on Conceptual
Modeling, Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.). Springer,
2010

	Abstract
	1 Introduction
	2 About the analyzed product lines
	3 How languages addressed variability
	3.1 Each model and its elements are for a single variant
	3.2 Reuse of models or model elements in multiple variants
	3.3 Explicit ability to mark, filter or modify models or elements for variants
	3.4 Core models and variant models
	3.5 Core models and languages for restricted variation of core
	3.6 Multilevel: model elements become language elements

	4 Evaluation of the case data and preliminary analysis
	5 Conclusions
	References

