
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Evaluating Tool Support for Co-Evolution of
Modeling Languages, Tools and Models

Juha-Pekka Tolvanen
MetaCase

Jyväskylä, Finland
jpt@metacase.com

ORCID: 0000-0002-6409-5972

Steven Kelly
MetaCase

Jyväskylä, Finland
stevek@metacase.com

ORCID: 0000-0003-0931-157X

Abstract— We present a framework for evaluating language

workbenches’ capabilities for co-evolution of graphical modeling

languages, modeling tools and models. As with programming,

language refinement, enhancement and other maintenance tasks

typically account for more work than the initial development

phase. Modeling languages have the added challenge of keeping

tools and existing models in step with the evolving language. As

domain-specific modeling languages and tools have started to be

used widely, thanks to reports of significant productivity

improvements, some language workbench users have indeed

reported problems with co-evolution of tools and models. Our

evaluation framework aims to cover changes across the whole

language definition: the abstract syntax, concrete syntax and

constraints. Change impact is assessed for knock-on effects within

the language definition, the modeling tools, semantics via

generators, and existing models. We demonstrate the viability of

the framework by evaluating the MetaEdit+ tool, providing a

detailed evaluation process for others to repeat with their tools.

The results of the evaluation show that MetaEdit+ automatically

updates and co-evolves models without error. In all cases the

editors open and work with existing models; when automated co-

evolution is impossible, the tool points to the items requiring

human intervention. Industrial-scale experience with this

approach, over language lifespans up to 25 years, is briefly

assessed to corroborate its sustainability and evaluation.

Keywords—domain-specific modeling, domain-specific

language, evolution, maintenance, metamodel evolution, model

evolution

I. INTRODUCTION

Refinement, enhancement and other maintenance tasks
normally account for more work than the initial development
phase. This applies to domain-specific languages and models
too, including their co-evolution. Compared to general purpose
languages, domain-specific languages (DSL) and domain-
specific modeling (DSM) languages evolve more frequently —
following changes in the domain and in the development needs
[1][2][3]. A recent DSL practitioner survey [4] found that 86%
of respondents reported language evolution and recommended
considering evolution as an intrinsic part of DSL creation.

An important characteristic of language evolution is that
changes must be reflected in artifacts already made with the
language: we want to preserve that work and move artifacts to
the new language version. This enables sustainable
development, both of the applications made by modeling, and of

the language itself. The economic and technical benefits of DSM
co-evolution are clear, but there are also important benefits for
other aspects of sustainability [5]. Poor co-evolution support can
lead to language stagnation [2], harming communication and
social sustainability as the distance between the stagnant
language and its evolving domain increases. As the gulf widens,
the 5–10 times productivity increase [1] offered by DSM falls,
leading to increased resource usage in development. With
‘software engineer’ being one of the largest job categories these
days, and IT equipment a significant consumer of energy, even
environmental sustainability is at risk. Conversely, enabling co-
evolution maintains the high sustainability benefits of DSM,
from developer productivity to the ease of targeting new, lower-
energy platforms with minimal effort through new generators.

The co-evolution of a domain-specific modeling language
has an important characteristic due to its restricted use. If the
language is made to address a narrow domain within a single
company or its team, as reported in over a hundred cases [6],
then it is likely that all language users are known, their specifi-
cations made with the language can be accessed, and data to
assess the impact of language evolution can be inspected in all
the language use contexts. Conversely, the number of users is
significantly smaller than for general purpose languages, so the
effort that can sensibly be spent per language change is smaller.

Research on co-evolution has focused on changes in certain
parts of a language — such as in its metamodel or
transformations — but not covered all aspects of a language
together, as we aim to in this paper. Also, while most research
on tools for DSLs and DSM, also called language workbenches
[7], has focused on the initial steps of creating the language (e.g.
[7][8][9]), we focus here on the refinement and maintenance of
the languages and models made. We propose a framework that
enables a holistic evaluation of a tool’s capabilities to support
co-evolution. We apply the framework to show its viability by
evaluating the MetaEdit+ tool [10]. For each evaluation task,
detailed material is provided for others to repeat the evaluation
process to validate it and to evaluate other modeling tools.

We start by describing previous research on language, model
and tool co-evolution (Section II), and try applying an existing
evaluation framework (III), leading us to suggest the set of
aspects to include in our own framework (IV). Section V
presents the procedure for applying our evaluation framework:
an example language and model, along with a set of evolutionary
steps to test all the aspects of co-evolution. In Section VI our

framework is then tested by following its procedure to evaluate
the co-evolution support of MetaEdit+. We assess the evaluation
framework based on the test experience (VII), and look at
industrial experiences to corroborate the evaluation (VIII). In
Section IX we conclude with proposed directions for future
extension and verification.

II. RESEARCH ON CO-EVOLUTION WITH TOOLS

Research on co-evolution has focused on metamodels and
models, with less research inspecting co-evolution of tool
support, and mostly only experience reports mentioning both.

A. Research on Language and Model Co-evolution

The large body of work on co-evolution has focused on co-
evolution of metamodels and models without considering
evolution in other parts of the language definition, such as its
constraints, notation or generators/transformations. A prevailing
approach [11] has been to create transformations acting upon
models (e.g. [12][13][14][15]) to enable their co-evolution with
metamodel changes. Once defined, an appropriate
transformation would be executed each time the language
evolves. See [3] for a survey of metamodel and model co-
evolution approaches. Note that while this survey covers a wide
range of approaches, it is based on a literature survey and does
not cover those co-evolution approaches applied in currently
used tools. Moreover, as many of the surveyed approaches are
ongoing work, Hebig [3] concludes that there is little data for
determining their applicability in industrial contexts.

In [3], one class of approaches suggests the use of
transformation languages to co-evolve models each time the
metamodel changes. The transformations are made for each case
and can be partly automatically produced. A second class of
approaches is based on identifying predefined co-evolution
strategies or allowing users to specify them. A third approach is
searching based on model data, not metamodel, to co-evolve the
model to the new metamodel. The final approach identified was
labeled as identifying complex metamodel changes. While these
approaches cover co-evolution, they focus only on changes in
metamodels — although Hebig [3] recognizes that evolution
also requires the co-evolution of other artifacts such as
transformations or constraints. We aim to inspect all aspects of
modeling language change with our evaluation framework.

Co-evolution of transformations and generators is seen as a
less popular research subject [11]. The likely reasons are that it
is considered as a normal language engineering task and does
not have such clear implications for the work of modelers. Also,
the wide variety of changes that are possible makes it less
automatable, although tools could provide some support.

The evolution of concrete syntax seems also to be seen as a
language evolution issue: how the mapping between abstract
and concrete syntax is maintained. While it is recognized in eva-
luation frameworks like [11], its influence on existing models
seems to be strongly dependent on the particular tooling used.

B. Research on Language and Modeling Tool Co-Evolution

There is relatively little research on how modeling tool
support co-evolves alongside the language supported [16].

Publications comparing language workbenches tend to focus on
initial language creation phases (e.g. [7][8][9]) and do not
address language evolution, nor the required co-evolution of
modeling tool support and existing models. This is somewhat
surprising: in a study [17] on practitioners’ modeling challenges
over 60% named evolution of language a challenge in tools. This
need for co-evolution also exists in fixed language modeling
tools, when either the language changes or the metamodel of the
language is refactored significantly. For example, after moving
from SysML 1.6 to SysML 2.0 one of the key concepts, ‘Block’,
does not exist anymore and the language is defined differently
from in the past [18].

Another recent study [19], focusing directly on DSM and
DSL tools, indicated that a tool’s ability to update models
automatically when the metamodel changes is considered the
second most wanted semantic editor feature — the most
important being highlighting model elements and associated
error messages. Both these features are addressed in this paper.

Studies directly evaluating tools take a wider view of
languages than just metamodels, as at least the editor
functionality is inevitably visible, and support for co-evolution
quickly becomes visible even with just incremental language
definition. In studies evaluating the capabilities of Eclipse-based
editors [20][16], concrete syntax is also recognized as a part of
the language definition. GMF-based tools are found to lack co-
evolution support in many ways [20], and Sirius-based editors
break or are incomplete in several co-evolution situations [16]
(see Table I in Section III below). Both studies are performed
and reported in a methodologically rigorous way, allowing
others to repeat and validate them. These studies are restricted
in the sense that they do not report changes that deal with
constraints related to the language definitions. Evaluations
[15][16][20] also vary in their classification of change impact:

1. non-breaking: the editor can open ([16]) or models
conform to the metamodel ([15]);

2. complete: all metamodel elements have graphical
counterparts in the editor ([16]);

3. valid: the editor exposes correct behavior, e.g. one can
create a model conforming to the new metamodel ([16]);

4. resolvable: an automatic procedure can restore validity
and completeness after a breaking change ([15][16]); ‘3
sound’ in [20] is similar, but others there do not map well.

Less research seems to have been done on evaluating
commercial tools applied on an industrial scale. What is
industry-scale may of course vary, but we expect models to be
large (>100,000 elements), have many language users (several,
dozens or hundreds rather than one or a few), and languages to
evolve and be used over a long period of time (over a decade).

Reports on industrial use provide another source for
inspecting co-evolution — often related to a specific tool. At
Philips, language engineers updated instances manually each
time the grammar in Xtext changed [21]. This was recognized
as a limitation, but was considered feasible for their case as the
number and size of instances (models) was small. Since manual
processes become tedious, error-prone and costly with larger
models, automated solutions are considered mandatory. Another
Xtext case, ([22] p. 263) implemented a generator to automate

transformations that could run over many models in a batch. The
actual mappings between two metamodels were made manually.
A transformation-based approach was also applied with
Microsoft DSL tools, for which Avanade presented a mapping
language as a basis for generating model converters [23].

A report [24] by Siemens indicated that migration scripts
were needed to keep existing models working with MPS.
Applying them was challenging because users also had their
own branches of models. When the language and generators
changed, it became hard to maintain tool support, so finally they
hosted custom RCP instances of MPS, one per language version,
matching each model release branch.

III. EXPLORATORY EVALUATION

Before proposing a new framework, one should evaluate
existing frameworks. Di Ruscio et al. [20] applied a set of
criteria to language and tool co-evolution in GMF, and
Pierantonio et al. [16] used this existing set to evaluate Sirius.
Parts of the framework there are also used in other research
mentioned earlier. Use of a common benchmark in this way is a
good example of increasing maturity — even if we also want to
continue and improve the benchmark, e.g. to cover co-evolution
of models as well as tools.

As an exploratory step, we thus took the 11 criteria tested on
both GMF and Sirius in the evaluations above, and applied them
to evaluate MetaEdit+ (5.5 Build 47). The results are shown in
Table I. The coloring is green and o for full success, red and x
otherwise, and where Sirius and MetaEdit+ property tests were
performed for both simple attributes and more complex
references, orange and xo for full success only on attributes.

The 11 criteria of the existing framework were relatively
easy to interpret in the context of a different tool. MetaEdit+
modeling tools handled all the changes well, with no errors or
omissions in tool behavior. Although the successful co-
evolution results were encouraging, they reveal the need for
more in-depth evaluation to identify cases, in MetaEdit+ and
other tools, where co-evolution support needs more work. Three
possible areas of extension can be seen:

 Location of Change: The existing framework only
tested changes to the abstract syntax of the language, and
this should be extended to cover changes made to other

parts of the language, such as its concrete syntax, and
rules or constraints.

 Nature of Change: The existing framework only
considered certain kinds of change operations, so other
kinds of operations should be examined to see if they
might raise their own questions of co-evolution.

 Location Impacted by Change: The existing
framework only tested the impact of changes on the
tooling, and this should be extended to test the impact on
other parts of the language definition (partly covered in
[16]), the generators and transformations, and existing
models.

IV. FRAMEWORK FOR EVALUATING CO-EVOLUTION SUPPORT

We separate the co-evolution of languages, models and tools
into four aspects. The first aspect is the location of the change,
i.e. the part of the modeling language being changed: its abstract
syntax, constraints, or concrete syntax. These commonly
accepted parts of languages are recognized as evolving by others
too (e.g. [11]).

The second aspect is the nature of the change: adding,
renaming, removing or changing parts of the language
definition. These first two aspects thus concern the change that
is made; the remaining two aspects cover the possible (adverse)
impact of each change.

The third aspect is the location impacted by the change, i.e.
which artifacts are adversely affected by the change: other parts
of the language definition, the tool support for modeling,
generators, or existing models. As not all changes can be
automated without adverse effects, we can also look at the
capabilities offered by the tool to support the language designer
and/or user through the evolution scenarios.

The fourth aspect is the resulting severity of impact on
artifacts, ranging from not opening at all to fully co-evolving.
We focus particularly on the user’s ability to interact with
artifacts via the tools. While tooling too is considered an artifact
in its own right, a tool may work properly but be unable to open
a certain model that has become adversely impacted by language
evolution; in that case we consider the problem to be in the
model artifact rather than the tool as an artifact itself.

A. Location of Change in Language Definition

Abstract syntax is typically defined via a metamodel. The
metamodel may also express the rules and constraints, or they
may be expressed in additional constraint or transformation
languages. Using language definitions by OMG as examples, a
metamodel in MOF specifies the concepts of the language and
constraints are defined with OCL. In our evaluation framework,
we separate these parts accordingly.

Constraints and rules may be strictly enforced or then shown
as warnings when violated, e.g. with a red icon in a diagram
symbol, or a warning in an error list pane of the editor [25]. If
the rule is made as part of the concrete syntax, we will consider
it there rather than as a constraint. Similarly if the rule is written
as a generator to produce an error list, we will consider it as part
of the generator. The deciding factor is thus where a particular
tool or language engineer chooses to implement it, rather than
whether it is semantically like a constraint.

TABLE I. SUMMARY OF METAMODEL CHANGE IMPACT ON TOOLS

 GMF [20] Sirius [16] MetaEdit+

 1 add concrete class x x o

 2 add abstract class x o o

 3 insert superclass o x o

 4 delete class x x o

 5 rename class x x o

 6 add property x xo o

 7 delete property x x o

 8 rename property x x o

 9 move property x x o

10 pull up property x o o

11 change property type x xo o

Concrete syntax defines the notation, making models visible
for humans and accessible via the user interface of the tool.
Depending on the representation style, a model can be a
diagram, map, matrix, text, tree, etc. or any of their combinat-
ions, and each kind of element there may have its own definition.

It would also be possible to consider language changes that
affect the semantics rather than other parts of the language
definition. How semantics is defined varies based on the nature
of language. For example, if used for producing code, semantics
is typically defined via a mapping to a programming language
(translational semantics via generator), or models are executed
at runtime (interpretative semantics). If the language is mainly
targeting communication, sketching or documentation, then
semantics is typically defined in a prose definition of the
language and its elements (e.g. as with modeling languages like
ArchiMate and SysML).

In any of these three approaches to semantics, a change to
the semantics is unlikely to break other parts of the language
definition or models — in the same sense of tool errors and
omissions as used for other language changes. We thus do not
test changes made to the semantics, but we will examine whether
changes made elsewhere can have an impact on the parts of the
language definition concerned with semantics, e.g. a generator
breaking after a language concept is renamed.

B. Nature of Change: Add, Rename, Remove, Change

Evolution can happen for example by adding, renaming,
removing or changing part of the language definition [15].
Looking more closely we can identify:

 Create + Add Link (e.g. new kind of object in language)

 Change simple content (e.g. number in constraint)

 Rename

 Remove Link

 Change Link (e.g. A->B becomes A->C)

 Delete (full deletion)

 Change in hierarchy (e.g. pull up property)

 Change of metatype (e.g. relationship becomes object)

 Change simple type (e.g. string becomes int)

A Link is a reference to another first-class element in the

metamodel, e.g. that Use Case diagrams can include Actor
objects. The reference can either be direct or by name, with the
latter generally being brittle with respect to rename operations,
but offering indirection and modularization needed in some
cases.

Some of the changes listed are so simple that they should
cause no problems in tools or models (e.g. creating a new object
type). Others are known to be hard, but familiar from many other
branches of software engineering (e.g. a string becomes an int).
We will focus on the four changes in bold, which in our
experience are the key changes encountered in language
evolution [26].

We decided not to include changes that are more in the
solution domain (refactorings of the metamodel, particularly its
inheritance hierarchy) rather than the problem domain (what is
desired in the language). As seen in the exploratory evaluation,
the definition and details of metamodel refactorings are more

dependent on the language workbench and metametamodel, and
harder to interpret consistently across different tools: not all
tools even allow inheritance within a metamodel. Our
experience is that refactorings of this kind tend to occur more
often at an early stage, before there are enough models to make
co-evolution a question. The same results in the language can
also normally be achieved by other means, e.g. rather than
pulling up a property to a superclass, it can be added to sibling
classes: less ideal, but not as serious an issue as not being able
to add, rename, remove or change parts of the language itself.

Before moving on from the aspects about the change itself to
the aspects covering the possible (adverse) impact of each
change, we should consider our practical philosophy for co-
evolution. Where a language change reduces the set of legal
models, it is rarely a good idea to adopt a strict formalist
approach: e.g. deleting parts of models that no longer correspond
to the language definition. The deleted parts would contain
information and earlier choices that the modeler will often want
to see as part of model co-evolution. Since the models have been
legal with respect to the earlier language definition, and valid for
generation, a better approach is deprecation: allow the old style,
but show warnings and guidance on the new style. This can be
accompanied by information on how the deprecation will
proceed, e.g. initially allowing both old and new, then not
allowing creation of further instances of the old style, then
showing warnings for the old style, then making the old style fail
integrity checks. Particular cases may need more detailed
conditions, e.g. only allow generation targeting products that are
themselves sunset or in maintenance mode, or change an old
property to be read-only or hidden. In most cases the overall aim
should be to guide users towards migrating their behavior and
existing models to follow the new approach, but there can also
be good reasons to allow the old style to remain, e.g. in models
that are no longer actively updated, but still in use. When there
is a separate reason to update one of those models, it can be
updated to the new style first.

C. Location Impacted by Change

While we focus here mainly on co-evolution impact on
models and modeling tools, a change in one part of the language
definition may have an impact on other parts of the language
definition. For example, in a typical language engineering task
adding a new kind of object to a diagram type generally leads to
giving it a symbol as its concrete syntax, adding some rules for
it, and updating generators to produce code from it. Similarly
removing it from the diagram type may leave no longer needed
rules and parts of the generator. In both kinds of cases, we will
not consider it a problem if the editors work without errors.

Co-evolution within the language definition is not as
significant as co-evolution with models, since it influences only
the work of a few language engineers. Also, the size of
specifications is smaller in language definitions than in system
or software specifications in models. It is nevertheless an
important aspect, as limited tool support for language evolution
can hinder its refinement leading to its stagnation.

The most-studied locations impacted by changes in a
language definition are the modeling tools and models. As we
have discussed these in depth earlier, there is little to add here.

We will just note that by models we refer to the actual model
data, not the ability to view or edit it; that will be considered as
part of the modeling tool functionality. A hard dividing line may
of course be difficult to set.

Finally, the semantics of the language may be adversely
impacted by changes elsewhere in the language definition. As
mentioned earlier, we will ignore changes that are simply not
made yet: e.g. when adding a new language concept, there will
generally be no generation for it, but this is not considered as an
error. However, if existing generators now break because of the
language change, that is a clear adverse impact.

D. Assessing Change Impact

Since our focus is on tools’ capabilities, the framework is
made primarily to evaluate how a given tool can cope with the
changes. Tool evaluations [15][16][20] characterize tool
functionality in a variety of ways, as mentioned earlier. Some of
the semantics of those categories seem somewhat unclear, and
indeed they seem to be applied somewhat differently in different
papers. We will try to follow similar ideas and ordering, but give
more concrete descriptions distinguishing the capabilities of
editor functionality. Rather than limiting the framework to
models, we will use the term ‘artifact’ to cover the various parts
of the language definition, or generators, or models — either
existing artifacts made earlier, or creation of a new artifact of
that type in the context of this language. The scoring is:

1. When creating a new artifact, the editor does not open,
or gives tool errors or warnings.

2. Editor opens for creating a new artifact but does not
provide the functionality expected.

3. Editor allows creating a new artifact but support for
viewing and editing earlier artifacts is incomplete.

4. Editor opens and asks for human intervention to finalize
co-evolution of earlier artifacts.
(4½ if existing models behave and generate correctly,
and deprecation guidance is provided as needed.)

5. Editor opens with fully co-evolved earlier artifacts.

Our main focus will be on model artifacts and modeling tool

behavior, but we will evaluate for impact on other artifacts too,
and the overall score will be the lowest of those for the various
kinds of artifact.

E. Scenarios of Co-evolution

Table II shows every possible combination of location and
nature of change: the scenarios we want to test. While these
could be evaluated individually, a coherent sequence of changes
gives a more realistic test. We thus order them to form 12 steps

or scenarios, in a sequence similar to what we might see in
practice. For example, scenario 1 refers to adding an element to
the metamodel, and scenario 2 adds a constraint related to the
new element.

For each such scenario we evaluate the impact of the change
on other parts of the language definition, on the tool’s modeling
functionality, on generators, and on existing models. We also
evaluate how the tool supports the language developer and
language user in the change.

V. AN EXAMPLE LANGUAGE AND MODEL

To make the evaluation concrete and repeatable we use an
example from [27]: a state machine for Gothic Security,
modeling the secret doors and revolving bookcases of spy films.
Its metamodel is shown in Fig. 1 above using a class diagram,
with an example model in Fig. 2 below. It should be easy to

Fig. 2. Example state machine model.

Fig. 1. Metamodel of state machine.

TABLE II. LOCATION OF CHANGE VS. NATURE OF CHANGE

Location of

Change ↓

Nature of Change

Add Rename Remove Change

Metamodel 1 4 7 10

Constraints 2 5 8 11

Notation 3 6 9 12

implement in any DSM language workbench. The language is a
dialect of state machines: states may have commands, and
transitions between states have a triggering event. In [27] both
commands and events have a name and a code. There are also
constraints, evident only from the generated code, e.g. state
name is mandatory and unique within the current state machine.

The model shown in Fig. 2 defines the functionality of a
system for Miss Grant for opening a hidden panel [27]. The
figure also illustrates the concrete syntax of the language. From
a model in this language code can be generated for various
targets; when assessing generator co-evolution, we will consider
the Java generators.

Following the co-evolution framework presented in Section
IV and its Table II, we have 12 different scenarios to inspect
whether a given change has adverse impacts on other parts of
the language, modeling tools, generators or models. For our
example language we choose these concrete scenarios:

1. Add element to metamodel: Add a new Reset element
to State machine, with a set of events that trigger it.

2. Add constraint: Only one Reset can be defined in a State
machine, and it can connect to only one State there.

3. Add notation: The symbol for Reset is created.
4. Rename element in metamodel: State is renamed to

Situation.
5. Rename constraint: In MetaEdit+, constraints do not

have names, so no change is needed.
6. Rename notation: The symbol for Situation is renamed.
7. Remove element from metamodel: The Reset element

is removed from State machine.
8. Remove constraint: Reset is not allowed to have a

relationship to Situation.
9. Remove notation: Reset’s symbol is removed.
10. Change metamodel: The Transition relationship’s

Trigger property is moved to the Source role.
11. Change constraint: Add Start, then update old Reset

constraints to point to Start instead, and add Start into
the original Transition binding.

12. Change notation: Make the Situation symbol refer to a
different library symbol.

Other concrete scenarios would be possible, but these 12
steps are defined so that they can be implemented following each
other. In this sense there are 12 sequential versions. All the
suggested changes are also evolutionary and not revolutionary:
If the language were to change completely, it would be more the
case that language engineers would create a new language.

VI. EVALUATION OF METAEDIT+

We show the viability of the framework by applying it to
evaluate MetaEdit+ [10][28]. MetaEdit+ is a mature language
workbench that supports graphical diagram, matrix and table
representations. It enables collaborative work on both language
engineering and language use: Multiple people can edit the same
language definition and multiple people can use the language at
the same time. MetaEdit+ can be used as local installations or
remotely in the cloud [29]. MetaEdit+ is commercially
successful, used by customers in both industry and academia
[30] and is available to download at metacase.com.

Language development and its maintenance can be carried
out in MetaEdit+ in three different ways. The primary way, used
here, is to use the integrated metamodeling tools in MetaEdit+
Workbench, covering abstract syntax, constraints, concrete
syntax and semantics of modeling languages. The second way is
graphical metamodeling, where a normal MetaEdit+ model
automatically produces and processes the input for the third
way, an XML import/export format for metamodels. The
graphical way covers the abstract syntax and constraints of the
language; the other ways cover all parts.

Detailed results of the evaluation have been made available
at https://github.com/mccjpt/Gothic as supplementary material,
with language definitions and models versioned before and after
each co-evolution scenario.

A. Adding New Language Elements: scenarios 1–3

Adding new elements to a language is typically easy from a
model co-evolution point of view, as instances of the elements
do not yet exist. To add a new metamodel element (scenario #1)
in MetaEdit+, the Graph Tool is used to add a new object type
‘Reset’ with a new property type containing a collection of
Events (‘Event’ already exists in the metamodel). MetaEdit+
provides the editing functionality automatically, along with a
simple default notation that the language engineer may change
as desired. As a normal language engineer’s task, adding a new
element to the metamodel may often be followed by related
changes to constraints and generators, but these are not
necessary for correct tool behavior.

Constraints set well-formedness rules to the language. In
MetaEdit+, constraints include 1) bindings that say a
relationship type can connect certain types of objects in certain
types of roles, possibly via certain types of ports on the object,
and 2) constraints on object occurrence, connectivity, ports and
property uniqueness.

New constraints (#2) are added in the Graph Tool: an
occurrence constraint that allows only one ‘Reset’ in a graph,
and a connectivity constraint that allows a Reset to only be in
one Transition. When a constraint is added, its influence on the
existing models may need to be checked, as there may be models
that do not satisfy the new constraint, e.g. by already having
multiple Resets. In MetaEdit+ both models and metamodels are
stored in the same repository, allowing language engineers to
view and inspect the impact of their changes on models, before
committing the changes and making them available for language
users. This helps the language engineer experiment, see the
results of changes, and think what might be best from a
modeler’s point of view.

To assist in updating, all models calling for a modeler’s
decision can be listed or annotated. In MetaEdit+ this could be
accomplished by symbol annotation via the Symbol Editor, or
by a generator listing model elements that do not meet the
constraints. An example of this is shown at the bottom of Fig. 3.
In this case, MetaEdit+ would report on models having Resets
that do not meet the constraints. This fulfills the tool feature
recognized as the most important in [19]: to highlight model
elements and associated error messages.

Adding new notation (#3) is straightforward from the co-
evolution point of view as models do not yet exist. In MetaEdit+,
the symbol for ‘Reset’ is created in the Symbol Editor by
drawing it as vector graphics or importing it from an SVG or
bitmap file.

As a result of adding these three language elements, editors
have full functionality, and all existing models open and update
automatically. In the case of a new constraint, modelers are
guided to update model elements that violate the constraint.

B. Renaming Language Elements: scenarios 4–6

In language workbenches in general, renaming an element in
the metamodel may influence concrete syntax, constraints on the
element, and often how semantics is defined. Moreover, it
influences existing models. In MetaEdit+ renaming ‘State’ to
‘Situation’ (#4) in the metamodeling tool automatically updates
the definitions of related constraints. If there are related
generators, they need to be updated with find and replace. If
there are several languages using ‘State’ the search can be
limited to a given language. Updating generators is not needed
if the generator is not bound explicitly to the name of the
metamodel element. After renaming an element in the
metamodel the models and editor updates automatically.

Renaming a constraint (#5) does not occur in MetaEdit+, as
constraints do not have names. If a constraint itself is based on
metamodel elements which have been renamed, they were
updated automatically earlier in scenario #4.

Renaming symbols (#6) is also tool specific. Typically,
symbols in MetaEdit+ are directly related to language elements
and do not have names. For more complex cases, a symbol can
however also be stored by name in a library, and another symbol
can incorporate it from the symbol library by referencing it by
name in a template. By renaming a ‘Rectangle’ symbol to
‘BlackRectangle’ in the place where it is referenced, both the
rename and reference update are accomplished in one operation.
After this update the notation is automatically reflected to
models and modeling tools.

To summarize, after renaming scenarios, all tools of
MetaEdit+ have full functionality and models are fully updated
automatically. In one scenario, generators required simple
updates.

C. Removing Language Elements: scenarios 7–9

Removing an element from the metamodel (#7), like ‘Reset’,
typically impacts other parts of the language and models.
However, since working in the same MetaEdit+ repository
“live” with models, before removing anything, language
engineers can first consider if it is better just to hide the
metamodel element or make it no longer instantiable, rather than
delete it and all its instances permanently. This is something that
is normally difficult with textual programming languages but
which modern tools for language development can provide. This
approach allows existing model data to be used for example
when generating code — after all, the generator support for them
already exists and works. This approach of deprecating rather
than hard deletion allows language users to see and update
design data created earlier, while guiding them not to use the old

language concept anymore. One bonus here is that if it is later
found that removal was not a good idea it is possible to bring the
removed parts back — and with good tool support this will also
fully restore their instances.

Removing Reset from the metamodel removes it from the
language definition and from editor functionality. This operation
is done in Graph Tool by removing ‘Reset’ from the used
language elements. On the model level, instances are still visible
and the language engineer can remove them from models. If the
removal involves decisions dependent on the model context, the
language engineer can implement model check functionality
similarly to that made earlier when adding new constraints. If
the removal calls for changes in generators, then the language
engineer can implement those similarly to any other generator
change.

Removing a constraint or binding (#8), e.g. that ‘Reset’ is
allowed to be connected to ‘Situation’, is done in MetaEdit+ by
removing it from the list of bindings in Graph Tool. Removing
a constraint generally broadens the set of possible models, and
so does not require additional actions from the language
engineer nor from language users, but removing a binding
narrows the set of possible models, so it may be useful to provide
deprecation guidance as in scenarios #2 and #7.

Removing an element from the metamodel normally
removes its notation automatically too. If only the notation is
removed, as with Reset’s symbol in scenario #9, the default
notation will be used in its place. If the removed symbol is part
of another symbol, like the compartment of commands in
‘Situation’, the language engineer must update the reference (or
accept that this part of the symbol will be empty). This is a
normal language engineering task rather than an adverse impact.

Removing language elements in scenarios #7-9 calls for
normal language engineering tasks. Since deprecation guidance
is provided for scenarios #7 and #8, and models, tools and
generators continue to work, language users do not necessarily
need to take any actions in these cases.

D. Changing Links on Existing Language Elements: #10–12

Changing a link to an existing element in the metamodel, like
in #10 moving the ‘Trigger’ Event property from the
‘Transition’ relationship to the ‘Source’ role, is more
challenging than a simple removal and addition. In this case the
model co-evolution could in theory be automated, as each
Transition has exactly one Source role (see Fig. 4 for example
code). Deprecation can still be used to good effect: we can allow
the Trigger Event property to remain in the Transition, as well
as adding it to Source. In that case, it seems most sensible to
make the new property (when provided) override the old, and to
flag as errors or at least warnings cases where both are provided
— at least if they specify different Events.

After this change the ‘Transition’ relationship has still also
the ‘Trigger’ information and generators use that data too.
Keeping ‘Trigger’ in ‘Transition’ is useful for transition phase
so that current Trigger information can be moved to ‘Source’
role. This can be done manually by cutting and pasting the
existing Trigger Event from the Transition to the Source role, or
by using model transformation with the MetaEdit+ API [28].

Language engineers can also prevent creating new ‘Triggers’ in
‘Transitions’ by making the property type read-only there. They
can also give deprecation guidance with an annotation or report
as in #2.

Changing an existing constraint calls for changing a link to
an existing element. To conduct scenario #11, the language
engineer must first add a new object type (‘Start’), in a similar
way to scenario #1. Next in the Graph Tool the ‘Start’ is added
to the existing binding constraint by including it in the ‘Source’
role alongside ‘Situation’. To finalize the scenario, the existing
constraints set in step #2 for ‘Reset’ are updated by changing
them to ‘Start’.

Finally, changing a notation link(#12) means choosing
another symbol for the notation or its parts. In MetaEdit+ the
template subsymbol can be replaced by opening the Symbol
Editor for ‘Situation’, opening the template element and
changing it to use another subsymbol from the library. (The
symbol deliberately uses a template so we can prove the more
complex case.)

During the evolution through these changes, editors continue
to work without errors or omissions, and old models open
automatically. For scenario #10, modelers cannot add Trigger
information to Transitions anymore and they see notifications to
update the models. If model transformation is used for #10
existing models can also be updated automatically, moving
Trigger information to the Source role.

E. Summary

Fig. 3. illustrates the co-evolved language and model after
the 12 scenarios. It also includes an extra Situation called

‘NewState’, to show how the constraint it violates is reported at
the bottom of the editor.

Table III summarizes the results of the evaluation. The
overall score for each scenario is given first in bold, followed by
the score for individual impact locations. (See caption and IV.D
on scoring.) The coloring is light green for fully automated (5),
lightish green for automation as full as seems desirable (4½),
and mid-green for cases in which the only adverse impact is in
generator or model co-evolution, where human interaction is
needed (4). In none of the cases does the functionality of editors
or other tools in MetaEdit+ break or show incorrect or non-
working UI elements. In the case of multiple people using the
language the result would be the same: they all automatically get
the updated language version and same co-evolution success.

In no scenario is there an adverse impact on the metamodel,
constraints or notation, nor on the tool functionality, so the co-
evolution score for these is always the highest, 5. In most cases
the models too update automatically when the language is
changed. In no cases are the models damaged, but in three cases
the change is such that a fully automatic model update would not
be desirable, and in one case not even possible, so deprecation
advice is provided for models using the old style, and both new
and old style can coexist and generate code correctly. Since
existing models and generated code remain valid and depre–
cation guidance is provided, these cases have a co-evolution
score of 4½ in Table III. In scenario 4, the renaming of an
element in the metamodel requires a manual find and replace to
update the generators, giving a co-evolution score of 4.

Where deprecation with manual update advice was provided,
an alternative would be to automate model transformations with
the MetaEdit+ API. The API was not used in the co-evolution
cases described here, but if used it would change the score to 5
in scenarios 7, 8 and 10, where automation without additional
modeler input may be acceptable (see VIII.A for an example).

VII. APPLICABILITY OF THE TOOL EVALUATION FRAMEWORK

Applying the evaluation framework showed that it is viable.
The scenario for renaming constraints was not relevant in
MetaEdit+, but this may be a good indication of the benefits of
deriving the scenarios from first principles, rather than tailoring
them to MetaEdit+: other tools may well name constraints.

Completing the evaluation framework’s scenarios was
straightforward in MetaEdit+, both for implementing the
language changes and assessing their impact. The evaluation
was not time-consuming, taking 32 minutes to implement the 12
steps. Each step was completed before the next, including any

Fig. 3. Model after 12 co-evolution scenarios in MetaEdit+.

TABLE III. METAEDIT+ CO-EVOLUTION EVALUATION SCORES:
METAMODEL, CONSTRAINTS, NOTATION | GENERATOR, TOOL, MODEL

Location of

Change ↓

Nature of Change

Add Rename Remove Change

Metamodel
5

555|555
4

555|455
4½

555|554½
4½

555|554½

Constraints
4½

555|554½
—

4½

555|554½
5

555|555

Notation
5

555|555
5

555|555
5

555|555
5

555|555

necessary manual updates to models or generators, and writing
a version comment. This time thus includes the language
engineer’s work to add co-evolution guidance and update any
generators impacted, and the language user’s work to update the
models according to the co-evolution guidance.

Clearly, this evaluation framework is significantly more
stringent than earlier frameworks, covering more aspects and
over the whole extent of the language, tools, generators and
models. This allowed us to find cases with room for
improvement in MetaEdit+, as opposed to its full marks on
earlier frameworks in Table I.

VIII. INDUSTRIAL EXPERIENCES OF EVOLUTION

A. When to Use Automation vs. Deprecation

As mentioned earlier, our experience suggests that where
language changes such as removals reduce the set of legal
models, organizations prefer an approach based on deprecation
rather than strictly formalist attempts to automatically or semi-
automatically update models wholesale. Conversely, where a
change like adding a new language element can indeed be
applied automatically with no danger, a completely automatic
and largely invisible approach is preferred.

This follows experience with other languages such as those
for programming, and also for constructs with language-like
usage patterns of few definers and many users, such as libraries
or APIs. It is also analogous to a familiar process in natural
language: the linguistic concept of a grammatical construct
ceasing to be productive, i.e. no longer being used to form new
material. When a construct is no longer productive, existing
material does not disappear but remains without changing. For
instance, the old plural ending -en in English is no longer used
to form new plurals, but old forms like children and oxen are
still in use. MetaEdit+ provides strong support for the case
where a model includes constructs that are no longer present in
its (productive) metamodel, allowing this natural process in
modeling too.

Making co-evolution fully automatic in cases where it is
always known to work, based on the location and nature of the
change, is clearly a positive factor in maintaining sustainability
with language evolution. For the remaining cases, deprecation
seems to be the strategy favored in industrial use — even where
automation facilities are provided. As use is rare, it seems best
to offer those facilities in a familiar programming language,
rather than require learning a new more domain-specific
language. The MetaEdit+ API [28] thus includes co-evolution
operations that can be called from virtually any language, e.g.
C# in Fig. 4, which raises Scenario 10’s score from 4½ to 5.

B. Real-time Automatic Evolution

In Hebig’s classification [3], MetaEdit+ co-evolution
identifies changes online, is UI-preserving, uses predefined
resolution strategies, and is automatic. Interestingly, no other
tool in the analysis has the same properties.

With each individual operation on the language definition,
the models currently loaded update automatically to correspond
to the structure of the new language version. Models that are not
currently loaded in memory are updated automatically during
loading. For most changes, the update is left to be performed
lazily in future too, only being saved at the point where the
model element has to be saved anyway, e.g. because it has been
changed in normal modeling activities.

For comparison, the evolution of one major version of one
GMF language, 214 changes were identified [31]. Of those 214,
197 could be accomplished using the co-evolution mechanisms
offered by COPE [31]. Of the 197, 196 would be accomplished
automatically and invisibly by built-in evolution of MetaEdit+
and 1 would require using the MetaEdit+ API to update models.

The MetaEdit+ co-evolution mechanisms are robust with
respect to skipping intermediate language versions and updating
straight to the most recent version. No problems have been
encountered, even with languages that have evolved for over 25
years with hundreds of users and gigabytes of models.

C. Language Workbench & Metametamodel Version Updates

In addition to language changes, language workbenches and
their metametamodels may also evolve, with similar potential
impact on language definitions, tooling, generators and models
made on that platform. As mentioned above, the GMF language
had 214 changes from version 1.0 to 2.0 [31]; a hand-written
migrator was provided for language definitions, but not for
models made from them nor for the significant amounts of
custom code commonly added to build a GMF-based editor.

MetaEdit+ tool version updates can upgrade any languages,
generators and models since the first release of version 2.0 in
1995, with fully automatic upgrades since version 3.0 in 1999
— covering many tool releases and significant updates of its
GOPPRR metametamodel [28]. In industrial use, not providing
rock-solid, near-zero effort, low risk upgrades is likely to lead to
organizations staying on an earlier tool version, with ensuing
dissatisfaction and an increasing possibility of a good language
being abandoned and benefits lost — a major hit to sustainability.

IX. CONCLUSIONS

We presented a framework to evaluate tool support for co-
evolution of languages and models made with them. The
framework builds on and combines previous work, and makes it
more stringent. It covers changes in language constraints and
concrete syntax as well as in the abstract syntax, and the impact
on all parts of the language and generators, as well as modeling
tools and models. Its scoring offers a more nuanced scale, and
hopefully one which is easier to apply consistently across
different parts of the modeling ecosystem and different tools.

The evaluation of MetaEdit+ shows that editors do not break
and existing models continue to work, largely avoiding the need
to create transformations to co-evolve models. The majority of

METype graphType = new METype() { name = "State machine" };
METype transitionType = new METype() { name = "Transition" };
METype sourceRoleType = new METype() { name = "Source" };

MetaEditAPIPortTypeClient api = new MetaEditAPIPortTypeClient();

foreach (MEOop graph in api.allGoodInstances(graphType))
{
 foreach (MEOop transition in api.contentsMatchingType(graph, transitionType, false))
 {
 MEOop[] sources = api.rolesForRel(graph, transition, sourceRoleType);
 MEAny trigger = api.valueForLocalName(transition, "Trigger");
 api.setValueForLocalName(sources[0], "Trigger", trigger);
 }
}

Fig. 4. MetaEdit+ API code to automate Scenario 10 model co-evolution

updates are achieved through automatic, built-in co-evolution of
models and modeling tools, with the rest becoming simpler by
following the established practice of deprecation rather than
deletion. Although providing deprecation guidance requires
some work, the overall time of 32 minutes for 12 scenarios
indicates that the work is not a significant burden. Some
improvements could be made in the existing model co-
evolution, e.g. offering better updates for generators after
renaming a metamodel element.

The main threats to validity of a new evaluation framework
are whether it can be applied to give consistent results for a given
tool, and whether it offers a useful comparison across different
tools. The trial evaluation of MetaEdit+ was performed by
Tolvanen and checked by Kelly: both experienced and thus
reliable test subjects, and using the normal tool functions
available to all users. Testing a previous framework made for
other tools and building on it improved cross-tool applicability.
Just as we built on an earlier framework, so our framework too
could be improved and verified by wider application. We thus
invite others to repeat the evaluation described here and to apply
it to evaluate other tools. More extensive cases are also
welcome, along with others’ experience of industrial-scale use.

Making language evolution simple, low-effort and low-risk
can be seen to better ensure that languages evolve to sustainably
continue to meet development needs. In industrial use of
MetaEdit+ since its first version in 1995, this approach has
compared favorably to approaches and tools that require
metamodelers and/or modelers to implement and apply
transformations each time the language changes.

REFERENCES

[1] J. Sprinkle, M. Mernik, J.-P. Tolvanen and D. Spinellis, “What kinds of
nails need a domain-specific hammer?”, IEEE Software, July/Aug. 2009.

[2] S. Kelly and R. Pohjonen, “Worst practices for Domain-Specific
Modeling”, IEEE Software, vol. 26, no. 4, 2009.

[3] R. Hebig, D. Khelladi and R. Bendraou, “Approaches to co-evolution of
metamodels and models: a survey”, IEEE Transactions on Software
Engineering, vol. 43, no. 5, May 1, 2017.

[4] H. S. Borum and C. Seidl, “Survey of established practices in the life cycle
of Domain-Specific Languages”, Proc. 25th Int. Conf. Model Driven
Engineering Languages and Systems (MODELS '22), ACM, 2022.

[5] P. Lago, S. A. Koçak, I. Crnkovic and B. Penzenstadler, “Framing
sustainability as a property of software quality”, Commun. ACM, vol. 58,
no. 10, Oct. 2015

[6] DSMForum, http://dsmforum.org/cases.html (accessed April 2023).

[7] S. Erdweg, T. van der Storm, M. Voelter, M. Boersma, R. Bosman, W.R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P.J. Molina,
M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu,
E. Visser, K. van der Vlist, G. Wachsmuth and J. van der Woning, “The
State of the Art in Language Workbenches”, Software Language
Engineering (SLE 2013), LNCS, vol. 8225. Springer, Cham. 2013.

[8] A. El Kouhen, C. Dumoulin, S. Gérard and P. Boulet, “Evaluation of
Modelling Tools Adaptation”, CNRS HAL hal-00706701, 2012.
http://tinyurl.com/gerard12

[9] J.-P. Tolvanen and S. Kelly, “Effort used to create Domain-Specific
Modeling languages”, ACM/IEEE 21st Int. Conf. on Model Driven
Engineering Languages and Systems (MoDELS 2018), ACM, 2018.
https://doi.org/10.1145/3239372.3239410

[10] S. Kelly, K. Lyytinen and M. Rossi, “MetaEdit+: A fully configurable
multi-user and multi-tool CASE and CAME environment”, Conf. on
Advanced Information Systems Engineering (CAiSE 1996), 1996.

[11] B. Meyers and H. Vangheluwe, “A framework for evolution of modelling
languages”, Science of Computer Programming, vol. 76, no. 12, 2011.

[12] G. Wachsmuth, “Metamodel Adaptation and Model Co-adaptation”,
European Conf. on Object-Oriented Programming, 2007.

[13] Y. Xiong, D. Liu, D. Hu, H. Zhao, M. Takeichi, and H. Mei, “Towards
automatic model synchronization from model transformations”, Proc.
22nd IEEE/ACM Int. Conf. Automated Software Engineering (ASE '07),
ACM, 2007.

[14] B. Gruschko, D. Kolovos and R. Paige, “Towards synchronizing models
with evolving metamodels”, Proc. Int. Workshop on Model-Driven
Software Evolution, IEEE, 2007.

[15] A. Cicchetti, D. Di Ruscio, R. Eramo and A. Pierantonio, “Automating
co-evolution in model-driven engineering”, Enterprise Distributed Object
Computing Conference, 2008. EDOC’08, pp. 222–231, IEEE, 2008.

[16] A. Pierantonio, J. Di Rocco, D. Di Ruscio and H. Narayanankutty,
“Resilience in Sirius editors: Understanding the impact of metamodel
changes”, ACM/IEEE Int. Conf. on Model Driven Engineering Languages
and Systems (MoDELS 2018), 2018.

[17] M. Ozkaya and F. Erata, “Understanding pPractitioners’ challenges on
software modeling: A survey”, J. Computer Languages, vol. 58, 2020.

[18] OMG, “Systems Modeling Language, SysML v1 to SysML v2
Transformation”, Release 2023-02, 2023.

[19] M. Ozkaya and D. Akdur, “What do practitioners expect from the meta-
modeling tools? A survey”, J. Computer Languages, vol. 63, 2021.

[20] D. Di Ruscio, R. Lämmel and A. Pierantonio, “Automated Co-evolution
of GMF editor models”, Int. Conf. on Software Language Engineering,
pp. 143–162, Springer, 2010.

[21] M. Schuts, M. Alonso and J. Hooman. “Industrial experiences with the
evolution of a DSL”, Proc. 18th ACM SIGPLAN Int. Workshop on
Domain-Specific Modeling (DSM 2021), ACM, 2021.

[22] B. Akesson, J. Hooman, J. Sleuters and A. Yankov, “Reducing design
time and promoting evolvability using Domain-Specific Languages in an
industrial context”, Model Management and Analytics for Large Scale
Systems, Academic Press, 2020.

[23] G. de Geest, A. Savelkoul and A. Alikoski, “Building a framework to
support Domain Specific Language evolution using Microsoft DSL
Tools”, Proc. 7th OOPSLA Workshop on Domain-Specific Modeling
(DSM’07), J. Sprinkle, J. Gray, M. Rossi and J.-P. Tolvanen, Eds.,
Computer Science and Information System Reports, Technical Reports,
TR-38, University of Jyväskylä, Finland, 2007.

[24] D. Ratiu, H. Nehls, A. Joanni and S. Rothbauer, “Use MPS to unleash the
creativity of domain experts: Language engineering is a key enabler for
bringing innovation in industry”. In: Domain-Specific Languages in
Practice, A. Bucchiarone, A. Cicchetti, F. Ciccozzi and A. Pierantonio,
Eds. Springer, 2021.

[25] S. Kelly and J.-P. Tolvanen, “Automated Annotations in Domain-Specific
Models: Analysis of 23 Cases”, 1st Int. Workshop on Foundations and
Practice of Visual Modeling, 2021.

[26] S. Kelly, M. Rossi and J.-P. Tolvanen, “What is needed in a MetaCASE
environment”, Enterprise Modelling and Information Systems
Architectures, vol. 1, no. 1, 2005.

[27] M. Fowler, Domain-Specific Languages, Addison-Wesley, 2010.

[28] MetaCase, MetaEdit+ 5.5 User’s Guides,
https://metacase.com/support/55/manuals/ (accessed August 2023)

[29] S. Kelly and J-P. Tolvanen, “Collaborative modelling and metamodelling
with MetaEdit+”, HoWCoM 2021, MoDELS 2021 Companion, Fukuoka,
Japan, 2021. doi:10.1109/MODELS-C53483.2021.00012

[30] J.-P. Tolvanen and S. Kelly, “Model-Driven Development Challenges and
Solutions - Experiences with Domain-Specific Modelling in Industry”,
Proc. 4th Int. Conf. Model-Driven Engineering and Software
Development (MoDELS 2016), 2016.

[31] M. Herrmannsdoerfer, S. Benz and E. Juergens, “COPE - Automating
coupled evolution of metamodels and models,” in ECOOP 2009 --
Object-Oriented Programming, pp. 52–76, Springer, 2009.

[32] D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin and M.-P. Gervais,
“Detecting complex changes during metamodel evolution,” Advanced
Information Systems Engineering (CAiSE 2015), Springer, 2015.

