rCan modellmg' solve codmg
-and testmg bottlenecks"

De3|gnmg for the
, Automotlve Industry

== Supplement sponsored by

/2 /Wlndows
’ - Embedded

Application Software Development

Charting the development process from concept to realisation

June 2007

Q
(=
-
N
©
o
©
=
i
w
i

ks with

|elling Languages

g domain can be represented
cts in a new, domain-specific
. Application developers can
applications using these high-
anerate full working code that
2 of the framework.

ves full control to the frame-
1 defines this new modelling
ncapsulate in it the rules of
itecture and component use.
- of DSM is that it markedly
*of the design, and therefore
ited; if an application design
& drawn. He also determines
nodels to the code that the
* should write manually. The
_ framework developer
thus formalises correct
development practice,
enforcing correct reuse
of the framework. In the

stopTime

rilime 'T‘

event that the framework
or platform changes, the

-
AL framework developer

[—>{4] [=]
Figure 1. Design of a

basic stopwatch application
in a digital wristwatch-

can make a change in
his modelling language,
generators, or both, and
all application developers
follow this change auto-
matically. A domain-spe-

E startTime
stopTima
-

specific modeling language. O}

cific modelling language
and its code generators

tions where the framework is large and changes
regularly. Research shows that many developers
often find it difficult to identify the appropriate
component for a particular task; usually there are
interdependencies that need to be understood,
optional services to take into consideration, and
altemative ways to provide the same function-
ality. Ensuring correct use of the frameworks
and platforms remains a significant problem for
framework developers—correct use requires that
all those working with the framework or platform
are doing so according to the established rules.
Domain-specific modelling provides a straight-
forward solution to this problem while adding
significant benefits for both the framework and
application developers. It enables the framework
developer to hide the details of the framework
by raising the level of abstraction on which ap-
plications are built—it is from this abstraction
that true productivity benefits are achieved. The

Www.esemagazine.com

guide application devel-
opers to follow the best practices—those that
the experienced framework developer has deter-
mined to be best suited for the given domain.

DSM-extended framework: example
Suppose a company makes digital wristwatches
and a particular development team is responsible
for making the watch applications: stopwatch,
time setting, and display. They implement these
applications on top of a framework that provides
common services such as time calculations, icon
visibility, alarms, etc. The framework expects that
a particular programming model is applied for
making the application and for calling its services.
Before the developers can implement any new
features, or modify existing ones, they must de-
cide how the application should function in terms
of the watch problem domain. This involves ap-
plying the terms and rules of the watch, such as
buttons, alarms, display icons, states, and user's

actions. DSM applies these concepts directly in
the modelling language.

Figure 1 illustrates an example of a design in
such a watch-specific modelling language. This
modelling language is used to design and cre-
ate various time related applications. The sample
design model represents features of a stopwatch:
the user initiates actions by pressing buttons, the
blinking of display elements, and the actions that
change the time. The model uses basic arithmetic
calculations on time variables and various display
functions for different states. The display function
for the running state is the lower green object; it
calculates the time to display by subtracting the
starting time from the current system time.

Although the modelling language raises the
level of abstraction beyond code, and completely
hides the details of the framework services from
the developer, it is still clearly based on the under-
lying watch architecture and its framework. The
design models describe the missing information
that fills the variation points in the framework to
build applications. With this language, developers
can focus purely on the design of the application
itself; a generator then produces complete and
working application code by using the services of
the framework.

Having a new modelling language, rather than
just a model, allows us to make many different
watch applications—just as with source code. If
we want to add an enhancement, the model can
simply be adjusted accordingly. Figure 2 depicts
an extension to the stopwatch application by add-
ing lap time functionality, and tums an icon on and
off to indicate when the stopwatch is running.

Steps for defining a DSM language

An incremental approach is often the best way
to build a domain-specific language. As with any
new process, minor adjustments are required dur-
ing the initial adoption. Once the model is prop-
erly configured for the main components of the
framework, it can be extended to cover additional
parts, and eventually the entire framework. This is
also a natural approach; in many cases the need-
ed framework and supporting components are not
yet completely available.

The process for defining modelling languages
and their generators can be divided into four
phases:

1. Identifying abstractions and how they
work together
2. Specifying the language concepts and

