
Collaborative modelling and metamodelling with
MetaEdit+

Steven Kelly
MetaCase

Jyväskylä, Finland

stevek@metacase.com

Juha-Pekka Tolvanen
MetaCase

Jyväskylä, Finland

jpt@metacase.com

Abstract—MetaEdit+ is a collaborative modelling tool and
language workbench with a multi-user client-server object repos-
itory. Users, clients, server and repository can all be geographi-
cally distributed, and users access them with local apps, remote
desktop or browser. Users can work with models and metamodels
synchronously, with buffering via design transactions (minutes
to hours), to prevent confusion and errors from releasing half-
finished work. The tool uses automatic fine-granularity locking
to avoid conflicts, allowing high concurrency. In this paper, we
present an example case on which neophyte users can try this
approach to collaboration in practice with minimal effort.

Index Terms—collaborative modeling, language evolution,
modeling tool, multi-user repository

I. INTRODUCTION

The issue of collaboration is central to the scalability

of model-driven development [1]–[4]. With domain-specific

modelling (DSM) having proved the best form of model-

driven development for many cases, the issue of collaboration

among the developers of the language also becomes important.

Even more vital becomes the issue of how language evolution

affects existing models and the ongoing work of modellers.

Human and organizational issues will have their effect on these

questions, but the key determining factor is often the modelling

tool.

Modelling tools have addressed collaboration in very dif-

ferent ways. Some have simply not got that far yet, and leave

the issue for users to sort out on a file level or via ‘one

user at once’ policies outside the tool. Others have tried to

apply code-based practices such as character-based files under

version control, with diff and merge to integrate changes by

multiple people to the same file. Industrial tools have tended

to offer a repository or database approach, avoiding conflicts

and manual merging through locking — at various levels of

granularity, and with locking automation varying from manual

to fully automatic. Over the years there have also been trials

of real-time collaboration with instant visibility of others’

work: clearly useful at the early stages of brainstorming and

whiteboarding, but often distracting in longer term work.

Few people have practical experience with the full range of

these approaches, so a workshop to bring tool builders and

modellers together and have them try the different approaches

is most welcome.

A. Case

In this paper, we offer a case of collaboration between

metamodellers and several modellers of various roles that we

have commonly encountered in industrial projects. The earliest

days of a project are generally in free-form tools like Word

or whiteboards, which we will not cover here. Collaboration

on the more formal models common in DSM begins at the

next stage, with the most critical times for tooling coming

once several models exist. We thus begin our case with an

existing metamodel and set of models. The metamodel and

models are extended and updated by the various participants

in parallel, with the work of most touching all models —

the hardest test for collaboration tooling. The domain-specific

modelling language we use is based on familiar concepts of

sensors, actions and states, targeting an Internet of Things

consumer device. The level of the models is such that new

users should be able to understand them and work with them

quickly, without needing to learn a new domain.

B. Tool

MetaEdit+ [5] is an industry-proven collaborative modelling

tool and language workbench with a multi-user client-server

object repository. Users, clients, server and repository can

all be geographically distributed, and users access them with

local apps, remote desktop or browser. Users can work with

models and metamodels synchronously, with buffering via

design transactions (minutes to hours), to prevent confusion

and errors from releasing half-finished work. The tool uses

automatic fine-granularity locking to avoid conflict, allowing

high concurrency. The automation works transparently and

with low ceremony, but with details available when desired.

This approach has been found to help users stay focused on

their work, yet with full visibility of others’ completed edits.

C. Solution

The practical demonstration of the MetaEdit+ approach to

collaboration on this case will be carried out by several neo-

phyte users in parallel, with only the briefest of introductions

to the tool and little time for installation. We thus choose to

offer the users remote access to MetaEdit+ client instances

running in the cloud, connected to a MetaEdit+ server there.

Users can work either with remote desktop software or in

a browser. Our experience is that this approach is the most



solid for new users, particularly when they are dispersed

geographically and organizationally. After a network dropout

or even PC reboot, the user can simply reconnect and their

session is still open, exactly as they left it. It also avoids the

need for installation of modelling software on a user’s own

computer: unlikely to be a problem for these participants, but

becoming increasingly important in commercial deployments.

II. CASE

A. Description of the problem/application

1) What is the context and purpose of the case?: “The year

is 2030. 15 years earlier, Juha-Pekka made a domain-specific

modelling language for the Internet of Things, the pinnacle of

cool tech back then. The language allowed modelers to create

programs for a Thingsee One [6], a device with a number of

environmental sensors and the ability to send various kinds

of alerts. Using the language, he built some models for a

boat he shared on the South-West coast of Finland back then.

Now, he is planning for his well-earned retirement — on the

tropical Canary Islands (he can dream!). He wants to expand

the models and update them for the rather different climate

there, and he has enlisted your help.”

2) What is modelled?: The modelling support provided

includes two languages, with Thingsee Purpose being our

focus here, and Thingsee Profile a simple collection of Purpose

models to run together on a device.

The Thingsee Purpose modelling language is based on

the sensors and services of an Internet of Things device,

the Thingsee One. The language offers the modeller various

environmental sensors (Accelerator, Timer, Geofence, Loca-

tion, Speed, Temperature, Humidity, Pressure, Luminance) and

actions to interact with the world via services (cloud, mobile,

SMS). There are also some sensors to monitor the status of

the device itself, such as its battery level and charging status.

The sensors and actions specified are connected together, and

which are activated at any given point is narrowed down by

timers and state-based logic. A transition in one Thingsee

Purpose can also shift the application into a state in another

Thingsee Purpose. Rules in the language help guide the

modeller in creating applications, as well as offering checks to

spot models that would require operating the device in unsafe

situations (e.g. too hot, too great a G-force).

A code generator produces the JSON specification code that

can be uploaded to the Thingsee device and executed by the

fixed ‘engine’ code there.

An example of a simple Thingsee Purpose model to detect

a car speeding is shown in Fig. 1. The system starts in state

‘Below limit’ (with the heavy outline), and if the speed is

>120 km/h (shown under the speedometer on the right) for

15 seconds, an SMS text message and cloud notification “Kid

is speeding” will be sent, and the system will move to state

‘Above limit’. When the speed is <117 km/h for 10 seconds,

the system returns to the ‘Below limit’ state.

A larger Thingsee Purpose model for a theft alarm and

tracker is shown in Fig. 2, in the Diagram Editor of MetaEdit+.

Fig. 1. Thingsee Purpose model to send warning when car is speeding.

3) Focus on the collaborative needs: teams, views, etc.:
Modelling by a team can be handled in many different ways.

At one extreme, the division of tasks can be primarily to

work around a chosen tool’s shortcomings: e.g. modularizing

the models so that each model file is only worked on by

one person. Where that modularization also follows a natural

division of knowledge and skills, that may indeed be a good

approach. At the other extreme, each person may work across

many models, adding their own particular knowledge or skill to

each model. This latter approach generally puts the most strain

on tool collaboration facilities, and thus we choose it here as

our acid test. If the tool can cope with this, it will be fine in

situations where modularization and division of labour help

keep users’ from treading on each others’ toes even without

tool help.

a) Why is collaboration needed for this case?: Where

work on models is divided according to skills, we have seen

several common patterns over the years. The most common

differentiator is metamodellers and non-metamodellers: al-

though the metamodeller may also model, most modellers will

not metamodel. Another common case is to have a group

of modellers responsible for initial models, at the level an

end-user could understand, and a second group of modellers

who complete those models with more technical details. In

many companies making products with an end-user interface,

the first group would earlier have created their specifications

with Word or PowerPoint, whereas the second group were

programmers who implemented the specifications. A third case

is a group who bring to bear some specialist knowledge or

skill on individual values in models, without affecting the

structure or behaviour: e.g. language specialists who check

text for display to users or provide translations. A fourth group

that we have not seen, but have often found wanting, is people

who are able to lay out models in a readable fashion. For

some reason, a non-trivial percentage of people who have

good conceptual modelling skills are lacking in the visual and

communication skills needed here, and their models could be

made more useful for others by somebody neatening them up

and making them visually clearer.

In this case, we will have an example of each of the bolded

categories above, giving us five roles: Metamodeller, Model



Fig. 2. Diagram Editor with Thingsee Purpose model for a theft alarm and tracker.

Creator, Technical Modeler, Climate Specialist, and Layout

Expert. At the start of the case there will be the metamodel and

an existing set of models. The Metamodeller will update the

metamodel, affecting all models, and the Technical Modeller,

Climate Specialist and Layout Expert will all be working

simultaneously on all the models. The Model Creator’s work

will depend on the Metamodeller’s work, and the others will

also apply their skills to these new models. The Climate Spe-

cialist will use their intimate knowledge of weather patterns

in South-West Finland and the Canary Islands — or Google!

— to update the temperatures, speeds, accelerations caused by

stronger seas etc.

b) What variations of the case affect collaboration?:
Depending on time and numbers of participants, more than

one participant could play the same role, some roles could

be omitted, or one participant could play more than one role.

Similarly, the task list for each role has elements that could

be omitted if necessary.

A limitation of the workshop format is obviously time: a

series of tasks that would take an expert user at most five

minutes cannot realistically cover normal collaboration scale.

With several people working, there would normally be one

or two orders of magnitude more models than are feasible

here. This spreads users’ work out, reducing the number of



operations that could be perceived as conflicting. In the tiny

set of models in this case, giving all users free rein to do

whatever they want would inevitably lead to conflicts, if not

on the tool level then at least on the semantic level. Conversely,

very strict instructions to each user could avoid conflicts even

in tools with poor concurrency support. It will be interesting

to see how users and tool fare with broad instructions, and

roles that force users to work on the same models.

III. METHODOLOGY/TOOL

A. General description of tool
MetaEdit+ [5] (metacase.com/products.html) is a language

workbench and modelling tool offering strong multi-user sup-

port [7], [8] and version control integration with no need for

manual diff and merge [9]. It supports multiple simultaneous

modelling languages, multiple representations of the same

model as matrices [10], tables and text as well as diagrams

— which go beyond bitmaps or boxes to offer dynamic

graphical languages [11] with real-time synchronous feedback

in symbols [12]. It has a particular focus on domain-specific

modelling with full code generation [13] and ease of language

creation and evolution [14], [15].
1) Related tools’ collaboration support: A recent system-

atic mapping study [16] investigated language workbenches

used to create DSM tools and similar textual tools, categorising

them into commercial and non-commercial. Of the commercial

tool use reported, MetaEdit+ accounted for over half, with En-

terprise Architect, Microsoft Visual Studio (and DSL Tools),

Obeo Designer and MagicDraw covering most of the rest, as

shown in Fig. 3. For reasons of space, we will restrict ourselves

to this top 5, accounting for 96% of reported uses.

Fig. 3. Reported use of commercial DSM Tools.

The Corporate Edition of Enterprise Architect1 adds support

for storing models in relational databases, using a manual lock-

modify-unlock approach to enforce that only a single user edits

1http://www.sparxsystems.com/WhitePapers/Version Control.pdf, retr.
3.9.2021

a given Package at once. Explicit “Get All Latest”, “Check-

out package”, “Check-in package” and “Check-in Branch”

commands are offered (the user must remember to use the last,

if a change affects more than one Package). While a package

is checked out, no other user can check-out that package.

Microsoft Visual Studio does not in itself offer collaboration

on models, and nor apparently do the DSL Tools2: collabora-

tion, multi-user aspects or merging are mentioned by neither

the web site nor any of the papers in the study (all by the

same co-authors).

Obeo Designer offers a separate Team edition3, with Eclipse

CDO on a relational database allowing multiple users to work

on the same models. Editing elements automatically locks

them, and explicitly saving the model propagates the updates

to the repository and other users.

MagicDraw offers a Teamwork Server4, with concurrent

support via pessimistic locks on parts of models. The user

must manually take the lock on each element or diagram, and

manually release the lock after the edit.

Most of the non-commercial tools do not support simulta-

neous collaboration, only post hoc diff and merge. A partial

exception is WebGME [17], which uses lightweight branching

where branches share the models that have not been modified.

The user is responsible for manual creation of branches,

changes can be broadcast to all users and conflicting edits

can be detected, retried, or rejected; there is no automatic

conflict resolution, or locking to prevent conflicts. In the

case of conflicting changes, the models diverge into two

disjoint branches, and merging is left as a manual task for the

users [18]. Another partial exception is AToMPM [19], which

allows multiple users to edit, but offers no locking or conflict

resolution: when multiple users change the same element, the

first change seen by the server wins. Although this avoids

manual locking or merging, it also loses users’ work after

they have done it.

B. Summary of typical use(s)

1) Real-time vs. offline collaboration: Real-time syn-

chronous collaboration and offline asynchronous collaboration

are often seen or at least presented as a black and white, binary

decision. In practice, there are shades of grey, and of course

no communication is entirely free of latency. Both approaches

have their merits, both for the users and for the tool builders.

In MetaEdit+, we have aimed at what is best for the users, in

the majority of the time using the tool.

The majority of MetaEdit+ industrial customers use it as

a multi-user domain-specific modelling tool. The models are

thus concise and close to the minimal amount of information

needed to specify that system or part of a system, within

the common solution space supported by the language and

its generators. Changes can thus be fast — little need to trawl

2https://docs.microsoft.com/en-us/visualstudio/modeling/
modeling-sdk-for-visual-studio-domain-specific-languages, retr. 3.9.2021

3https://www.obeodesigner.com/en/collaborative-features retr. 3.9.2021
4https://docs.nomagic.com/display/MD190/Locking+a+model+for+

editing+in+Teamwork+Server retr. 3.9.2021



through other models to check technical details that might im-

pact the desired change — but also contain little routine work

(cf. programming, where what is semantically one change

may require a number of similar changes elsewhere in the

code, only some of which are automatable by refactorings).

Modelling in a DSM language thus keeps the modeller focused

on the essential aspects of the task, and the time freed from

routine work can be used to think on a higher level, from the

point of view of the end user or resulting system.

To put it another way, DSM aims to keep the modeller’s

brain working at maximum capacity on the essential issues as

much of the time as possible. As any programmer knows, min-

imizing distractions is key to productivity when doing serious

brain work. Outside of initial brainstorming or whiteboarding,

modellers are often best served by not being intimately aware

of every action of every other modeller on the team. Yet there

is little more frustrating than working for hours or days on the

basis of one specification, only to find that the specification

has changed in the meantime. Particularly time-consuming is

the case where that specification was internally inconsistent,

and should never have been released in that state. Modellers

thus need relatively fast updates — hours or fractions of an

hour, rather than days or weeks — but those updates should

only be of work that the other person considers ready for

release to the team. In MetaEdit+ this is handled through

design transactions, with an explicit commit by the user to

save the work and make it available to others. (To discard his

changes, a user can alternatively abandon his transaction, in

addition to normal multi-level undo operations.)

Where users’ work clashes on the same model elements,

however, we want to know straight away, to avoid later

conflicts. This is managed in MetaEdit+ by locks at the server:

when a user starts editing an element, he obtains a lock on

it; if a second user attempts to edit the same element, before

having seen the first user’s changes, their attempt to obtain a

lock will fail. The second user will see the lock through normal

UI mechanisms such as greying of OK buttons or menu items,

and if desired can choose Info. . . to see details on the reason

and the identity of the first user.

In terms of conflict-prevention, MetaEdit+ thus operates as

real-time synchronous collaboration. In terms of visibility of

changes to others, only changes the user has accepted by

committing are made available to others. In terms of visibility

of changes by others, the user’s work will not be interrupted

mid-transaction by others’ changes, but only when he begins

a new transaction (i.e. MetaEdit+ operates at the highest level

of ACID transaction isolation [20], [21]). Between commits,

a user is thus assured of a consistent view of the repository,

rather than feeling the world is shifting beneath their feet as

they work.

2) Granularity of collaboration unit: Modelling tools with

no support for collaboration lock implicitly at the level of

a model file, often preventing users from even viewing that

model (or models) until the first user closes it. Many tools’ col-

laboration support works at the granularity of a single model,

preventing two users from editing simultaneously within it.

Where objects are reused between models, this granularity can

expand to a set of related models. Bad experiences from these

coarser levels of granularity are one reason why many are

wary if they hear a tool uses locking for concurrency.

In MetaEdit+, locking is extended to the finest levels

of granularity: individual properties in objects. This gives

maximum concurrency and permeability to modelling, and

minimizes the times a user will be unable to perform a desired

edit. However, there are situations where allowing only the

finest granularity will actually work against the user, and in

those instances MetaEdit+ will take a broader lock: here are

two examples.

Firstly, in many cases the properties in a single object are

semantically interrelated: there may be a Start Date and an End

Date, or as in the case of our Thingsee language, a Maximum

Temperature and a Minimum Temperature. Allowing one

modeller to edit one of these while another edits the other will

often lead to illegal or inconsistent models, despite neither user

having themselves done anything wrong. Even outside of these

clearest cases, some level of interrelation is so common that

we have found it best to lock all of the properties of an object

together: the benefit to consistency and comprehensibility

clearly outweighs the tiny number of cases in practice where

users would actually edit different properties in the same object

in overlapping transactions. This also means there is no need

for the metamodeller to answer the often impossible question

of what might be semantically interrelated, and modellers to

wonder in which cases they might be protected: the tool will

protect them for properties within an object, and for other

cases they can use other mechanisms like checking reports or

warning symbols.

Secondly, experiences from other modelling tools such as

TDE [22] show that if graphical layout operations are allowed

simultaneously to multiple users in the same diagram, this

often results in a ‘tug of war’ between the users over objects.

Graphical layout is thus locked as a whole for a diagram

when opening it. By analogy, operations that affect the set

of objects or relationships in a graph also lock the graph as

a whole, while leaving the details of the individual objects

or relationships themselves free for others to work with. In

terms of the GOPPRR meta-metamodel of MetaEdit+: a user

can have the lock on the Graph, without having the lock on

any of its Objects or their Properties.

C. Any features specifically interesting for this case?

Locking in MetaEdit+ is automatic: the addition of explicit

operations to lock and unlock would add extra work and

cognitive load for the modeller, and the results of such manual

decisions are unlikely to reach the levels of accuracy and

concurrency afforded by good automation. However, there is

one common case where users will want to avoid locking,

to leave the locks free for others, and that is where the

users will work their way through many models or elements

without changing them. Most commonly this occurs in a

review situation, or an ad hoc manual search. In those cases,

the user can choose not to obtain a lock, by holding down



Shift while opening the element. (It is also possible to invert

this for frequent read-only users, so Shift is needed to obtain

a lock. Similarly, users can be granted read-only access to

certain projects — sets of models.)

In the tasks in our case, this feature will be used by the

Technical Modeller and Climate Specialist when they open

graphical diagrams. By holding down Shift when opening each

diagram (so roughly five times), they can edit the properties

of objects in that diagram, while leaving the graphical layout

unlocked for the Layout Expert. This is mostly a courtesy: in

practice, the Layout Expert can also open each diagram early

in his session, thus obtaining and holding the locks.

IV. SOLUTION

A. How is the domain reflected in the tool?

The domain-specific modelling language for an Internet of

Things device, Thingsee One, is implemented in MetaEdit+

as a graphical modelling language.

B. How does the tool support the required collaboration?

The aim in MetaEdit+ is to support many kinds of collabora-

tion needs found in the development phases where a modelling

language is used. (Pre-modelling phases such as brainstorming

and free-form whiteboarding are not really in focus; nor

are post-modelling phases such as code compilation, linking,

automated testing, releasing etc.) In the case in this paper, we

have deliberately chosen collaboration that involves multiple

users editing the same models, traditionally the weak point of

both file-based and many repository-based tools. We have also

made sure the coverage extends across both metamodelling

and modelling, across both conceptual and representational

data, and across both graph-level and graph element levels

of granularity.

Although the case is thus challenging, the architecture and

mechanisms of the MetaEdit+ multi-user version — described

in the previous sections — should be able to support it, at

least in theory. Since the case is also based on the kinds of

collaboration that are found in industry (extended to some

extent with things we would like to see more of in industry),

we have good evidence that these kinds of collaboration also

work in practice. Testing their applicability to neophyte users

in a tight timetable will be interesting.

Some features of the collaboration tasks demand a certain

order, regardless of the tool. For example, if the Metamodeller

defines a new Property slot in an Object type, the Technical

Modeller can only start filling in those properties in objects

after that definition has been made. Similarly, the Model

Creator must create new models before the modellers in other

roles can perform their tasks on those models.

C. Link to demonstration video (optional)

As yet, we do not have a video of the five roles in the

case performing their work in parallel. For 5 minutes of

video showing metamodeling and modelling collaboration in

a different language in MetaEdit+, please see 1:57-5:04 and

7:10-9:03 in https://youtu.be/JQzt4cd8ppc.

For a brief introduction to the Thingsee modelling language

and using it in the MetaEdit+ tool, interested readers can see

https://vimeo.com/139681451. This shows a single Thingsee

‘purpose’ (an application) being built, to monitor when a car

borrowed by one’s teenage offspring is exceeding the speed

limit.

The rough order and parallelism of the case tasks are shown

in Table I. More detailed instructions will be provided to

participants.

Fig. 4. Updated layout of Speeding model.

V. HANDS-ON SESSION

A. What insights do you aim to gain from these hands-on
experiences?

We are particularly interested in seeing the initial response

of modellers more used to file-based tools: will the lower-

ceremony approach of a repository be welcomed as simpler

and more efficient, be thought difficult simply because it

is different, or even be perceived as a threat — as indeed

modelling itself was to some programmers. Offering the tool

via the cloud, without the need for local installation, may be

felt to be easier, or equally to be disempowering or confusing.

In addition to the final models and the workshop survey,

we will also collect user feedback during the hands-on (e.g.

via Zoom recording), and the automatic version history of the

models will show how users worked. Where possible, users

could also record their session as video locally, or capture

their screen as their virtual web camera for Zoom.

B. Why are these insights relevant?

Seeing new users take their first steps with a tool is always

a privilege. Particularly where a task has felt complex before,

if a new tool’s different approach can make it simpler, this can

help make modelling more prevalent.

C. Are there any specific research questions you would like to
answer through the participation of the community?

Over a quarter of a century ago, empirical research showed

poor support for collaboration in modelling tools was an

important factor preventing their wider use. This served as

a motivator in aiming at strong multi-user support from the



TABLE I
TASKS FOR ROLES

Metamodeller Layout Expert Climate Specialist Technical Modeller Model Creator
Add new property slot Rearrange diagrams Update temperatures Create new models:

- for Technical Modeller as in Fig. 4: - warmer & narrower range wait for Metamodeller - storm season
Add/Update rules - Sensors on left or above Update velocities and accelerations Enter new property values - tourist season
Update symbols - Actions on right or below - more open, rougher seas

start in MetaEdit+. It will be interesting to see whether what

we wrote back then [8] could still be found today:
“Even standard CASE tools have been slow to move from

single to multi-user support. Empirical research has shown

the current lack of multi-user support in CASE tools is

a serious problem [23], [24]. In particular, Selamat et al.

[25] found that lack of multi-user support was the single

largest CASE-specific reason why CASE tools were not being

adopted in Malaysia. In addition to these questionnaire-based

surveys of organisations, an empirical laboratory examination

by Vessey & Sravanapudi [26] found that support for co-

operative working was poor in current CASE tools.”

VI. CONCLUSION

A. Summary of the case and solution
In this paper, we offer a case of collaboration between

metamodellers and several modellers of various roles that we

have commonly encountered in industrial projects. The aim is

to introduce users to a way of collaboration that is faster and

easier than file-based diff and merge. The metamodel and mod-

els are extended and updated by users working simultaneously,

with the work of most touching all models — the hardest test

for collaboration tooling. The domain is an Internet of Things

consumer device, with the domain-specific modelling language

offering familiar concepts of sensors, actions and states, so that

new users should be able to understand quickly and work with

minimal instruction.

B. Future plans for the tool support
Over the last few years, modelling tool customers have in-

creasingly virtualized their tooling infrastructure, using virtual

machines, remote desktops and private clouds. A logical next

step is to provide tool evaluation, piloting and even long term

use via cloud services offered by the tool provider. Particularly

with respect to evaluation, a workshop setting with neophyte

users could provide valuable feedback on using such a cloud

service.

REFERENCES

[1] A. Bagnato, E. Brosse, A. Sadovykh, P. Maló, S. Trujillo, X. Mendial-
dua, and X. De Carlos, “Flexible and scalable modelling in the mondo
project: Industrial case studies,” in Workshop on Extreme Modeling, co-
located with MODELS, vol. 1239, 09 2014.

[2] J.-P. Tolvanen and S. Kelly, “Model-driven development challenges and
solutions: experiences with domain-specific modelling in industry,” in
International Conference on Model-Driven Engineering and Software
Development MODELSWARD. IEEE, 2016.

[3] M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini, “Collaborative
model-driven software engineering: A classification framework and a
research map,” IEEE Transactions on Software Engineering, vol. 44,
no. 12, pp. 1146–1175, 2018.

[4] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, “Grand
challenges in model-driven engineering: an analysis of the state of the
research,” Software and Systems Modeling, vol. 19, no. 1, pp. 5–13, Jan
2020. [Online]. Available: https://doi.org/10.1007/s10270-019-00773-6

[5] S. Kelly, K. Lyytinen, and M. Rossi, “MetaEdit+: A fully configurable
multi-user and multi-tool CASE and CAME environment,” in Inter-
national Conference on Advanced Information Systems Engineering.
Springer, 1996, pp. 1–21.

[6] Haltian, “Thingsee One IoT device,” 2015. [Online]. Available:
https://haltian.com/reference/thingsee-one-iot-device/

[7] S. Kelly, “Application of repository technology and concepts to a
metaCASE environment,” in Towards a comprehensive metaCASE and
CAME environment: conceptual, architectural, functional and usability
advances in MetaEdit+. University of Jyvaskyla, 1997, ch. 5.

[8] ——, “CASE tool support for co-operative work in information sys-
tem design,” in Information Systems in the WWW Environment, IFIP
TC8/WG8.1 Working Conference on Information Systems in the WWW
Environment, 15-17 July 1998, Beijing, China, ser. IFIP Conference Pro-
ceedings, C. Rolland, Y. Chen, and M. Fang, Eds., vol. 115. Chapman
& Hall, 1998, pp. 49–69.

[9] ——, “Collaborative modelling with version control,” in Software Tech-
nologies: Applications and Foundations, M. Seidl and S. Zschaler, Eds.
Cham: Springer International Publishing, 2018, pp. 20–29.

[10] ——, “A matrix editor for a metaCASE environment,” Information and
Software Technologies, vol. 36, no. 6, pp. 361–371, 1994. [Online].
Available: https://doi.org/10.1016/0950-5849(94)90036-1

[11] S. Kelly and R. Pohjonen, “Dynamic symbol templates and ports
in MetaEdit+,” in Proceedings of the 2013 ACM Workshop on
Domain-Specific Modeling, ser. DSM ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 19–20. [Online].
Available: https://doi.org/10.1145/2541928.2541932

[12] S. Kelly and J.-P. Tolvanen, “Automated annotations in domain-specific
models: Analysis of 23 cases,” in Proceedings of FPVM 2021: 1st In-
ternational Workshop on Foundations and Practice of Visual Modeling,
A. Di Salle, A. Pierantonio, and J.-P. Tolvanen, Eds., 2021.

[13] ——, Domain-specific modeling: enabling full code generation. John
Wiley & Sons, 2008.

[14] J.-P. Tolvanen and S. Kelly, “Effort used to create domain-specific mod-
eling languages,” in Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems,
2018, pp. 235–244.

[15] ——, “Applying domain-specific languages in evolving product lines,”
in Proceedings of the 23rd International Systems and Software Product
Line Conference - Volume B, ser. SPLC ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 40–41. [Online].
Available: https://doi.org/10.1145/3307630.3342389

[16] A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino,
F. P. Basso, and B. Medeiros, “Systematic mapping study on domain-
specific language development tools,” Empirical Software Engineering,
vol. 25, no. 5, pp. 4205–4249, Sep 2020. [Online]. Available:
https://doi.org/10.1007/s10664-020-09872-1

[17] M. Maróti, T. Kecskes, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz,
T. Levendoszky, and A. Ledeczi, “Next generation (meta)modeling:
Web- and cloud-based collaborative tool infrastructure,” CEUR Work-
shop Proceedings, vol. 1237, pp. 41–60, 01 2014.

[18] T. Ma and J. Sallai, “MiW: A domain specific modeling environment
for complex molecular systems,” Procedia Computer Science, vol. 108,
pp. 1232–1241, 12 2017.

[19] J. Corley, E. Syriani, and H. Ergin, “Evaluating the cloud architecture
of atompm,” 01 2016, pp. 339–346.

[20] T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Computing Surveys, vol. 15, pp. 287–317, 1983.



[21] ISO/IEC 9075-2:2016, “Information technology - database languages -
SQL - part 2: Foundation (SQL/foundation),” International Organization
for Standardization, Geneva, CH, Standard, 2016.

[22] A. Taivalsaari and S. Vaaraniemi, “TDE: supporting geographically
distributed software design with shared, collaborative workspaces,”
in Advanced Information Systems Engineering, 9th International
Conference CAiSE’97, Barcelona, Catalonia, Spain, June 16-20, 1997,
Proceedings, ser. Lecture Notes in Computer Science, A. Olivé and
J. A. Pastor, Eds., vol. 1250. Springer, 1997, pp. 389–408. [Online].
Available: https://doi.org/10.1007/3-540-63107-0 28

[23] S. Stobart, A. van Reeken, G. Low, J. Trienekens, J. Jenkins, J. Thomp-
son, and D. Jeffery, “An empirical evaluation of the use of CASE
tools,” in Proceedings of 6th International Workshop on Computer-Aided
Software Engineering, 1993, pp. 81–87.

[24] E. Rupnik-Miklič and J. Zupančič, “Experiences and expectations
with CASE technology—an example from Slovenia,” Information
Management, vol. 28, no. 6, p. 377–391, Jun. 1995. [Online]. Available:
https://doi.org/10.1016/0378-7206(94)00050-S

[25] M. Selamat, C. Choong, A. Othman, and M. Rahim, “Non-use
phenomenon of CASE tools: Malaysian experience,” Information
and Software Technology, vol. 36, no. 9, pp. 531–537, 1994.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0950584994900981

[26] I. Vessey and A. P. Sravanapudi, “CASE tools as collaborative support
technologies,” Commununications of the ACM, vol. 38, no. 1, p. 83–95,
Jan. 1995. [Online]. Available: https://doi.org/10.1145/204865.204882


